TOPIC 1	ECG (Hyperkalaemia) SUBJECT: CBB LOA: Choose an item.				
STEM	A 60-year-old woman presents feeling light headed, dizzy and nauseated. We will start with the Clinical Building block.				
Question A	Describe her ECG?				
Knowledge:	 rate 60/min regular P wave not visible Wide QRS complexes Peaked T waves 				
Notes:	Two to pass				
Question B	What is the likely cause of these ECG changes?				
Knowledge:	Hyperkalaemia				
Notes:	Hyperkalaemia to pass				
Question C	The potassium has come back as 7.8 mmol/L. What immediate treatment would you consider and why?				
Knowledge:	 Stabilising the myocardium: Calcium Chloride/Gluconate 2. Reduce serum K by redistribution into the intracellular space: Insulin/Dextrose, Sodium bicarbonate, Beta agonist / salbutamol 3. Eliminate potassium from the body: Resonium, Normal Saline, Frusemide, Dialysis PROMPT: What other treatment could be considered? 				
Notes:	Requires 1 or 2 to pass with justification				

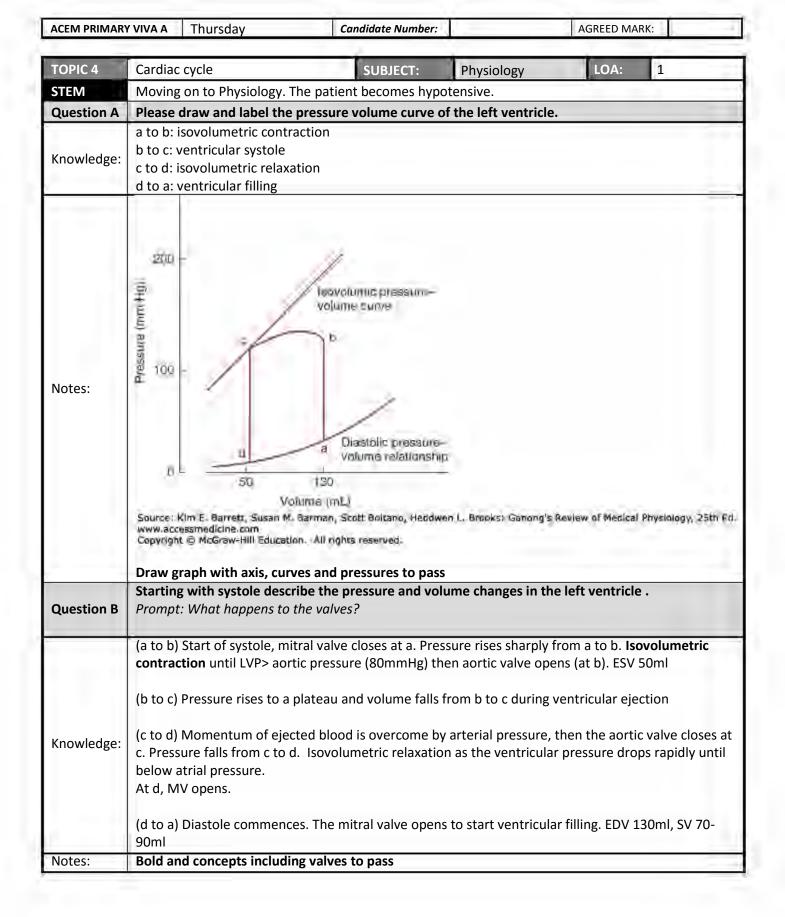
TOPIC 2	ACE Inhibitors SUBJECT: Pharmacology LOA: LOA 2			
STEM	Moving on to Pharmacology. The patient is on Ramipril.			
Question A	What is the mechanism of action of Ramipril?			
Knowledge:	 ACE Inhibitors result in a reduction in systemic BP due to the following mechanism: Inhibits Angiotensin Converting Enzyme from hydrolysing Angiotensin I to Angiotensin II. Angiotensin II is a vasoconstrictor hence its reduction results in a decrease in vascular tone (main effect) Angiotensin II leads to aldosterone secretion. Hence its reduction leads to reduced Na and H₂O retention, leading to a reduction in BP Angiotensin II metabolises bradykinin to its inactive form. Hence its reduction results in an increase in bradykinin, leading to vasodilation and hence reduction in BP 			
Notes:	Needs 2 out of 4 concepts to pass			
Question B	What are the adverse effects of Ramipril?			
Knowledge:	Dizziness, hypotension, headache, weakness, loss of taste, diarrhoea, rash, fever, joint pain, cough, wheezing, angioedema, mild hyperkalaemia, acute renal failure, teratogenic.			
Notes:	Hypotension and 2 others			

Question C	What adverse drug interactions may occur with ACE inhibitors?					
Knowledge:	 Diuretics/antihypertensives → Hypotension General Anaesthetics → Hypotension Lithium → Lithium toxicity NSAIDs → Hyperkalaemia and reduced effects of ACE inhibitor Potassium sparing diuretics/potassium supplement: Hyperkalaemia PROMPT: Can you give some examples of drug interactions with ACE inhibitors and the adverse effect that results? 					
Notes:	Two to pass					
Question D	What advantages do angiotensin receptor blockers have over ACE inhibitors?					
Knowledge:	 No effect on bradykinin, so reduced incidence of cough, angioedema More complete inhibition of actions of angiotensin II PROMPT: What is the mechanism to reduce the incidence of cough? 					
Notes:	Concept to pass					

TOPIC 3	Femoral TriangleSUBJECT:AnatomyLOA:1				
STEM	Moving on to Anatomy. You are unable to secure a peripheral line and decide to insert a femoral central line				
Question A	What are the boundaries of the femoral triangle?				
Knowledge: (Model of femoral triangle)	 Superior: Inguinal ligament (11) Medial: lateral border of adductor longus (1) Lateral: Sartorius (23) Floor: Iliopsoas and pectineus (19) 				
Notes:	Two to pass				
Question B	Identify the contents of femoral triangle on this image?				
Knowledge:	 Lateral to medial: 1) Femoral nerve (5) and its branches, 2)Femoral artery (4) and several of its branches 3,)Femoral Vein (6) and its proximal tributaries 4) Deep inguinal lymph node (14), lymphatics (15) 				
Notes:	Three to pass				
Question C	What are the surface markings when trying to locate the femoral vein?				
Knowledge:	Using the anatomical landmark for the femoral artery: Femoral artery is found below the inguinal ligament; midway between ASIS and pubic tubercle, Femoral vein is just medial to artery.				
Notes:	Adequate description				
Question D	Describe the course of the Femoral vein in the femoral triangle?				
Knowledge:	 Starts as popliteal vein Medial to femoral artery, lateral to canal Ends as external iliac vein Draining into it: profunda femorus, great saphenous 				
Notes:	Two to pass				

TOPIC 4	Renal Handling of potassiumSUBJECT:PhysiologyLOA:1				
STEM	Moving on to Physiology.				
Question A	How does the kidney handle potassium?				
Knowledge:	 Filtered in Glomeruli (600meq /24 hours) Reabsorbed in proximal tubules and thick ascending limb of loop of Henle (560meq/24 hours: >90%) Active transport via Na-K-2Cl Co-transporter Secreted/Excreted by distal tubules/ collecting ducts (502meq/24 hours) amount proportionate to flow rate through distal tubules (rapid flow rate reduces intertubular potassium concentration, thus facilitating secretion) under influence of aldosterone, increases potassium secretion into the urine. 				
Notes:	Bold concepts to pass				
Question B	Explain K+ transport in the collecting duct?				
Knowledge:	H-K ATPase in the cells of the collecting ducts reabsorbs K+ in exchange for H+. Hence if H+ secretion is increased, K+ excretion is decreased				
Notes:	Concept to pass				
Question C	How does aldosterone increase potassium secretion into the urine?				
Knowledge:	 Aldosterone secretion is triggered by high serum K. Aldosterone acts at the DCT and cortical collecting ducts. <u>Action of aldosterone:</u> Stimulates to Na/K ATP pump at the basolateral surface of the principal cells in the collecting tubule. 2 K enters the principal cells in exchange for 3 Na into the bloodstream at the basolateral surface Causes K channels to form at the apical surface of the principal cells. Higher intracellular K concentration means the K enters the tubular lumen Causes Na channels to form at the apical surface of the principal cells. Na enters the principal cells from the tubular lumen and gets into the bloodstream via the Na K ATP ase pump 				
Notes:	Where action occurs and 1 action to pass				

TOPIC 5	Renal failureSUBJECT:PathologyLOA:2					
STEM	Moving on to Pathology. Her blood results show acute renal failure thought to be due to acute tubular injury.					
Question A	Define acute tubular injury.					
Knowledge:	Clinically by acute deterioration of renal function. There is often morphological evidence of renal tubular injury.					
Notes:	Concept to pass					
Question B	What pathological processes can cause an acute tubular injury? Please give an example of each.					
Knowledge:	 Ischaemia due to decreased or interrupted blood flow: microscopic polyangiitis, malignant hypertension, microangiopathies and systemic conditions associated with thrombosis (e.g., HUS, TTP, DIC), decreased effective circulating blood volume, renal artery stenosis Direct toxic injury to the tubules (e.g., by drugs, radiocontrast dyes, myoglobin, haemoglobin, radiation) Acute tubulointerstitial nephritis: hypersensitivity reaction to drugs, infections, metabolic diseases, chronic urinary tract obstruction, transplant rejection, sjogren syndrome, vascular disease. Urinary obstructions by tumour, prostatic hypertrophy, stones or blood clots. 					
Notes:	Two causes with an example of each.					
Question C	Describe the clinical course of an Acute tubular injury?					
Knowledge:	 Highly variable clinical course Initiation phase: duration about 36 hours, slight decline in renal function, rise in Urea. Maintenance Phase: sustained decreases in urine output 40 to 400ml/day, salt and water overload, rising urea, hyperkalaemia, metabolic acidosis and other manifestations of uraemia Recovery phase: steady increase in urine output may reach up to 3L/day, large amount of sodium, potassium and potassium are lost in urine. Eventually, renal tubular function is restored, and concentrating ability improves. 					


ACEM PRIMARY VIVA A	Thursday	Candidate Number:	AGREED MARK:	
	marsaay			

TOPIC 1	ECG SUBJECT: CBB LOA: Choose an item.					
STEM	A 50-year-old man presents to the Emergency Department with chest pain. We will start with the Clinical Building Block.					
Question A	Please interpret his ECG.					
Knowledge:	Atrial Fibrillation with rapid ventricular response rate Narrow complex, Rhythm: irregularly irregular Rate 135/min (125-145), No P waves, No ischaemic changes					
Notes:	Recognise AF, narrow complex, HR / tachycardia to pass					
Question B	What are the causes of this rhythm?					
Knowledge:	 Common IHD / Valvular heart disease /HT / Cardiomyopathies / Thyrotoxicosis Congenital aberrant pathways /Sepsis Less Common 					
Notes:	3 to pass					

TOPIC 2	Digoxin SUBJECT: Pharmacology LOA: 1					
STEM	Moving on to Pharmacology. The patient is on digoxin for this rhythm					
Question A	Describe the pharmacodynamics of digoxin.					
Question A	Prompt: What are the cardiac effects of digoxin?					
	Inhibitor of Na ⁺ /K ⁺ ATP-ase.					
	i) Increases intracellular Na ⁺ and decreases intracellular K ⁺ .					
	ii) increased intracellular Na+ leads to reduced Na/Ca ²⁺ exchanger activity which leads to increase in					
	intracellular calcium.					
	iii) increased Intracellular Ca ²⁺ causes an increase in contractility (inotropy).					
	Inhibition of the Na ⁺ /K ⁺ -ATPase in vascular smooth muscle causes depolarization, which causes smooth muscle contraction and vasoconstriction.					
Knowledge:	iv) Electrical effects as a concept					
	-Direct: shortening of AP- shortened atrial and ventricular refractoriness					
	-Increased automaticity of the heart muscle: bigeminy, followed by VT and then VF.					
	v) Parasympathetic and sympathetic effects					
	-At lower doses, parasympathetic effects: early signs of toxicity = bradycardia and AV block.					
	-At higher doses of toxicity, increase sympathetic effect which may further sensitize the					
	myocardium to automaticity.					
Notes:	2 bold to pass					
Question B	What are the non-cardiac symptoms and signs of digoxin toxicity?					
	i) GIT: anorexia/nausea/vomiting/diarrhoea.					
Knowledge:	ii) CNS: disorientation, hallucinations and yellow/green vision (or some variation of) / CTZ					
	(chemoreceptor trigger zones)					
Notes:	1 CNS to pass (disorientation or visual disturbance or CTZ)					
Question C	What factors may predispose a patient to digoxin toxicity?					
	(i) <u>Electrolyte imbalance</u>					
le de la companya de	-Hypokalaemia (K+ inhibits digoxin binding to the Na/K ATP-ase).					
	-Hypercalcaemia (potentiates digoxin toxicity by increasing the intracellular Ca ²⁺ stores, producing					
	automaticity)					
	-Hypomagnesemia					
Knowledge:	(ii) Drugs that increase digoxin effect					
	Amiodarone (by increasing plasma digoxin concentrate), diltiazem, verapamil, quinidine, macrolide					
	antibiotics (azithromycin, erythromycin and clarithromycin), K+ depleting drugs (including diuretics),					
	spironolactone					
	(iii)Organ disease					
	-Renal failure (important because of kinetics)					
	-Hypothyroidism					
Notes:	2 bold topics (with an example of each) to pass					

ACEM PRIMARY VIVA A	Thursday	Candidate Number:	AGREED MARK:
			and the second se

TOPIC 3	Acute Coronary Syndromes / Ischaemic Heart Disease SUBJECT: Pathology LOA: 1						
STEM	Moving on to Pathology. The patient has ongoing chest pain.						
Question A	What is an acute coronary syndrome?						
Knowledge:	ACS is a clinical manifestation of ischaemic heart disease, and can present as unstable angina, acute MI (either STEMI or NSTEMI) or sudden cardiac death.						
Notes:	Reasonable definition to pass						
Question B	What are the pathological processes that underlie acute coronary syndrome?						
Knowledge:	ACS typically initiated by an unpredictable and abrupt conversion of a stable atherosclerotic plaque to an unstable and potentially life-threatening atherothrombotic lesion through rupture, superficial erosion, ulceration, fissuring, or deep hemorrhage. In most instances, plaque changes—typically associated with intra-lesional inflammation— precipitate the formation of a superimposed thrombus that partially or completely occludes the artery.						
Notes:	Explanation of stable progresses to unstable plaque						
Question C	Following acute myocardial infarction, what complications might a patient have?						
Knowledge:	 Contractile dysfunction causing hypotension Cardiogenic shock in 10-15% Arrhythmias e.g. sinus bradycardia, AF, HB, tachycardia, VT, VF Myocardial rupture: ventricular free wall rupture (2-7 days pots MI), septum rupture, papillary muscle rupture Ventricular aneurysm Pericarditis (2-3 days post MI)/ Dressler's syndrome Infarct expansion Papillary muscle dysfunction Progressive heart failure 						
Notes:	At least 3 complications to pass						

ACEM PRIMARY VIVA A	Thursday	Candidate Number:	AGREED MARK:	

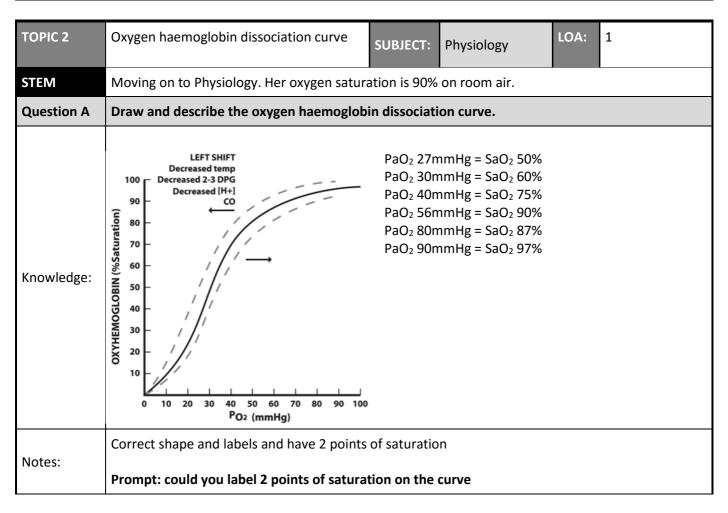
TOPIC 5	Heart (Model) SUBJECT: Anatomy LOA: 1						
STEM	Moving on to Anatomy						
Question A	Please identify the great vessels and branches which enter and exit the heart of the on this model. Prompt: what's this?						
	SVC- Right Brachiocephalic vein, Left Brachiocephalic vein						
	IVC						
Knowledge:	Ascending aorta- Brachiocephalic trunk, left common carotid artery, left subclavian artery,						
	Pulmonary Trunk and pulmonary arteries						
	Pulmonary veins						
Notes:	Bold to pass						
Question B	(NB - Open the heart model). Please identify the chambers and valves of the heart?						
Iz	RA, LA, RV, LV						
Knowledge:	Tricuspid Valve, aortic valve, pulmonary valve, mitral valve,						
Notes:	All 4 chambers and valves to pass						
Question C	Describe the structures of the conducting system of the heart.						
	SA node: Anterior-lateral near the junction of the SVC and RA						
	AV node: Posterior- inferior region of the interatrial septum, near the opening of the coronary sinus						
Knowledge:	AV bundle of HIS: Through the fibrous skeleton of the heart, along the membranous part of the						
	interventricular septum						
la de la companya de	Divides into Right and Left bundles which pass on each side of the muscular IV septum						
Notes:	SA node, AV node and rough location to pass						
Question D	Describe the arterial supply to the cardiac conduction system						
Question D	Prompt: What's the usual arterial supply to the cardiac conduction system?						
	SA node- RCA 60%, circumflex 40%						
Knowledge:	AV node and bundle- RCA, AV nodal artery						
	Right and Left Bundles and Purkinje fibres- LAD						
Notes:	SA and AV nodes typically supplied by RCA to pass						

TOPIC 1	VBG (Acute kidney injury)	SUBJECT:	CBB	LOA:	n/a	
STEM	An elderly patient presents with abdominal and back pain. Blood tests are performed. We will start with the Clinical Building Block.					
Question A	Please interpret this VBG					
Knowledge:	High anion gap metabolic (lactic) acidosis with incomplete respiratory compensation and acute kidney injury. Low pH = acidaemia Low pCO2 + bicarb = metabolic Expected pCO2 = 31 Winters (HCO3 x 1.5) + 8 Partial resp comp. Anion Gap = 31 HAGMA with high lactate Hyper K + high Cr = AKI Raised glucose = stress response					
Notes:	Metabolic + Acidosis to pass					
Question B	What are the potential clinical causes for this VBG in this patient?					
Knowledge:	Ruptured AAA, ischaemic gut, pancreatitis, perforated viscous, sepsis, dissection. Candidates may mention CATMUDPILES (CO, CN, Alcoholic ketoacidosis, toluene, methanol, uraemia, DKA, Paraldehyde, phenformin, iron, isoniazid, lactic acidosis, ethylene glycol, salicylates, starvation ketoacidosis)– Examiners to decide on how to rule on this					
Notes:	Bold = 2 intra-abdominal causes to pass					

TOPIC 2	Posterior Abdo Wall Vessels SUBJECT: Anatomy LOA: 2				
STEM	Moving on to Anatomy. You are concerned about this patient. A CT scan is performed.				
Question A	Identify structures that can be seen in this axial slice of his abdominal CT scan.				
Knowledge:	Liver, Intestines, Pancreas, Spleen, Kidneys, Descending Aorta, Vertebral Body, Rectus Muscle, Diaphragm, Inferior Vena Cava				
Notes:	6 out of 10 to pass including one vascular structure				
Question B	Describe the branches of the abdominal aorta?				
Knowledge:	Coeliac, Superior Mesenteric, Inferior Mesenteric, Suprarenal, Renal, Gonadal (urogenital/endocrine); Subcostal, Inferior Phrenic, Lumbar, Common Iliac arteries				
Notes:	At least 2 bold + any 2 others				

TOPIC 3	Aneurysms	SUBJECT:	Pathology	LOA:	1	
STEM	Moving on to Pathology.	T				
Question A	What are the risk factors for abdominal ao	rtic aneurysı	n?			
Question A	Prompt: Clinical or pathological risk factors					
Knowledge:	Male, smoking, age > 60, FHx, CTD (eg Marfa	ans, Ehlers-D	anlos), vasculitis, h	yperter	ision , diabetes,	
Kilowieuge.	atherosclerosis, trauma, congenital, infection	on, inflamma	tion			
Notes:	2x Bold + 2 others to pass					
Question B	Describe the pathogenesis of an aneurysm?					
Knowledge:	Aneurysms can occur when the structure or function of the connective tissue within the vascular wall is compromised. Atherosclerotic plaque in intima Compressed media with degeneration and weakness of the wall and cystic medial degeneration. Local inflammation (proteolytic enzymes with collagen degradation - role of matrix metalloprotinases) Loss of vascular smooth muscle cells Inappropriate synthesis of non-elastic ECM					
Notes:	Concept to pass					
Question C	What are clinical consequences of an aneu	rysm?				

	ACEM PRIMARY VIVA A	Friday	Candidate Number:		AGREED MARK:	
--	---------------------	--------	-------------------	--	--------------	--


	Pain(less) mass
	Rupture - risk increases with diameter > 5cm (modest increase > 4 cm)
	Retroperitoneal or intraperitoneal
Knowledge:	Obstruction: branch obstruction e.g. mesenteric, vertebral, renal
	Embolism: plaque or thrombus
	Impingement/compression of adjacent structures e.g. ureter
	Infection / mycotic
Notes:	Bold + 2 others to pass

TOPIC 4	Disordered Renal Function SUBJECT: Physiology LOA: 1						
STEM	Moving on to Physiology. The patient has impaired renal function.						
Question A	What are the physiological consequences of this?						
Knowledge:	 Proteinuria (predominantly albuminuria) - Due to increased permeability of glomerular capillaries. Uraemia - Accumulation of breakdown products of protein metabolism resulting in symptoms of uraemia. Acidosis - Failure to excrete acid products of digestion/metabolism with urine maximally acidified. Total amount H+ secreted reduced due to impaired renal tubular production of NH4+. -Exception - Renal tubular acidosis (impaired ability to acidify urine) Hyperkalaemia - H+/K+ exchange Abnormal Na+ handling (retain excess amounts Na+). 3 mechanisms: -Acute GN - amount of Na+ filtered markedly decreased -Nephrotic syndrome - incl. aldosterone causes salt retention. Low plasma protein means fluid shifts from plasma into interstitium. Resulting low plasma volume triggers Renin-angiotensin system. -Volume overload 3 out of 4 bold to pass 						
Notes:	· · ·						
Question B	Why does the kidney lose the ability to concentrate and dilute urine in a patient with impaired renal function?						
Knowledge:	In advanced kidney disease osmolality fixed at plasma level indicating that the ability to concentration or dilute urine has been lost This is due to - disruption of the countercurrent mechanism - loss of functioning nephrons NB positive feedback in that the increased filtration on the remaining nephrons eventually damages more nephrons from fibrosis						
Notes:	Concept of disruption of the countercurrent mechanism and loss of functioning nephrons to pass						

Question C	How does metoprolol differ from propranolol in its receptor action?					
Notes:	Bold to pass					
Knowledge:	Negative inotropic and chronotropic effects. Slow A-V node conduction with increased PR on ECG Decrease BP by a mechanism not fully understood but probably includes suppression of renin release and CNS effects.					
Question B	3 What are the cardiovascular effects of metoprolol?					
Notes:	2 pharmacokinetic parameters to pass					
	Half-life - 3 – 4 hrs Metabolised in liver					
Knowledge:	Vd – large (>200L)					
	Well absorbed orally but Bioavailability 50% due to 1st pass effect.					
Question A	Describe the pharmacokinetics of metoprolol Oral or IV.					
STEM	Moving on to Pharmacology. The patient is on Metoprolol					
TOPIC 5	Metoprolol SUBJECT: Pharmacology LOA: 1					

ACEM PRIMARY	ARY VIVA A Friday Candidate Number: AGREED MARK:					
	r					
	Metopr	olol is β ₁ specifi	c and propranolol is not (equi	potent at β_1 and β_2).		
	β_1 equipotent					
Knowledge:	β_2 50-100 fold less potent					
	At higher doses is less specific					
Notes:	Bold to	pass				

TOPIC 1	CXR (Pneumonia)	SUBJECT:	CBB	LOA:	n/a
STEM	A 72-year old woman presents with shortness of breath and fever. We will start with the Clinical Building Block.				
Question A	Please describe and interpret her CXR.				
Knowledge:	Erect CXR, PA view, slightly rotated, trachea deviated to right Right mid-zone opacity /consolidation, likely pneumonia in the superior aspects of the RLL.				
Notes:	Bold to pass				
Question B	On a PA CXR how do you differentiate between a right lower and right middle lobe pneumonia?				
	R middle lobe has loss of R heart border				
Question C	What factors predispose patients to the development of pneumonia?				
Knowledge:	Extreme age Underlying chronic disease: DM, COPD, CCF Immunodeficiency: congenital or acquired, abnormal splenic function, decreased splenic function or asplenia. Recent viral respiratory tract infection eg influenza Smoker Neurological: poor swallow (CVA, Parkinsons etc)				
Notes:	3 to pass				

ACEM PRIMARY VIVA B

Question B	What are the implications of the shape of the curve?
Knowledge:	UPPER: Flat upper part means if pO_2 in alveolar gas falls, loading of O_2 is little affected LOWER: steep lower part means peripheral tissue can draw large amount of O_2 for only small drop in capillary pO_2
Notes:	Clear concept to pass
Question C	What factors shift the curve?
Knowledge:	Right: increased temperature, increased pCO ₂ , increased H ⁺ (decreased pH), and increased 2-3 DPG Left: Reverse of above
Notes:	3 factors to pass

TOPIC 3	Pneumonia	SUBJECT:	Pathology	LOA:	1	
STEM	Moving on to Pathology					
Question A	What are the pathological patterns of bact	terial pneun	nonia?			
Knowledge:	 Bronchopneumonia: patchy consolidation of lung, areas of acute suppurative inflammation, may be patchy through one lobe but is more often multilobar and frequently bilateral and basal because of tendency of secretions to gravitate into the lower lobes. Lobar Pneumonia: fibrinosuppurative consolidation of a large portion of a lobe or an entire lobe. Patterns overlap, patchy involvement may become confluent producing lobar consolidation. 					
Notes:	Bold to pass Prompt: What patterns of pneumonia can be seen in a CXR?					
Question B	Describe the stages of the inflammatory response seen in lobar pneumonia					
Knowledge:	 Four stages of inflammatory response: Congestion: vascular engorgement, intra-alveolar fluid with few neutrophils and often the presence of numerous bacteria. Lung appears heavy, boggy and red. Red hepatisation: massive confluent exudation with neutrophils, red cells and fibrin filling the alveolar spaces, lobe appears red, firm and airless with a liver like consistency. Gray hepatisations: progressive disintegration of red cells and the persistence of a fibrinosuppurative exudate, lobe appears greyish, brown and dry surface. Resolution: exudate within the alveolar spaces undergoes progressive enzymatic digestion to produce granular, semifluid debris that is resorbed, ingested by macrophages, expectorated or organised by fibroblast growing into it. 			and fibrin filling sistency. ence of a zymatic digestion		
Notes:	3 stages to pass Prompt: What are the classic morphological changes seen in lobar pneumonia?					

	AGREED MARK:
Question C	What are the complications of pneumonia?
Knowledge:	 Abscess formation: tissue destruction and necrosis causing abscess formation particularly common with type 3 pneumococci or Klebsiella infections. Empyema: spread of infection to the pleural cavity, causing the intrapleural fibrinosuppurative reaction. Bacteraemic dissemination: dissemination to heart valves, pericardium, brain, kidneys, spleen or joints causing metastatic abscesses, endocarditis, meningitis or suppuratives arthritis. Local extension : pleuritis Parapneumonic effusion Respiratory failure / ARDS Bronchopleural fistula Pulmonary fibrosis Sepsis Death
Notes:	2 of bolded response plus 1 other to pass
TOPIC 4	Rib bones- 1st ribSUBJECT:AnatomyLOA:1
STEM	Moving on to Anatomy.
Question A	Identify this bone and demonstrate its features.
Knowledge:	First rib Broadest, flattest, shortest rib. Lies nearly horizontal, with wide body. Left side. Determined by identifying superior surface. Features: Head, Neck, Tubercle, Shaft Single facet in its head for articulation with T1 vertebra only Superior surface, from neck to tip: - groove for subclavian artery and lower trunk of brachial plexus (posterior to artery) - scalene tubercle and ridge, attachment of scalenus anterior - groove for subclavian vein - flat outer surface is attachment of first digitation of serratus anterior - attachments to costoclavicular ligament (inner) and subclavius (outer) Tip articulates with costal cartilage Prompt: Which side is this?
Notes:	To pass: - First rib - Correct side - Groove for subclavian artery - PLUS any 2 features
Question B	Describe the neurovascular relations of this bone?
Knowledge:	Nerves: C8 above and T1 nerve root below the neck; these unite to form lower trunk of brachial plexus, sitting above surface behind subclavian artery Sympathetic trunk (cervicothoracic ganglion) in contact with anterior border of neck In groove for subclavian artery is lower trunk of brachial plexus, behind the artery Vessels: Subclavian artery runs in groove, behind scalene tubercle, touching outer border of rib. Subclavian vein runs anterior to scalene tubercle, in its own groove. First intercostal neurovascular bundle beneath the undersurface, covered by parietal pleura
Notes:	To pass: 1 neurological and 1 subclavian vessel

TOPIC 5	Paracetamol SUBJECT: Pharmacology LOA: 1				
STEM	Moving on to Pharmacology. Paracetamol is given for her fever.				
Question A	Describe the pharmacokinetics of paracetamol.				
Knowledge:	Rapid absorption Bioavailability 70-90%. Peak concentration after 30-60 minutes Slightly protein bound Metabolism: Hepatic, >95% undergoes glucuronidation and sulfation, 5% undergoes metabolism via CYP 450 mechanism (phase 1 reaction – hydroxylation) to form NAPQI, NAPQI is toxic but usually detoxified by glutathione. First order kinetics, Half life is 2-3 hours				
Notes:	3 to pass				
Question B	Describe the mechanism by which paracetamol causes toxicity?				
Knowledge:	Zero order kinetics Paracetamol is conjugated with glucuronide and sulphate (by transferase enzymes) – this pathway becomes saturated in overdose, allowing increasing paracetamol to be metabolized by the smaller CYP 2E1 pathway to NAPQI (N-acetyl-p-benzoquinone imine) NAPQI is detoxified by glutathione which becomes depleted resulting in high levels of toxic metabolite (NAPQI)				
Notes:	Bold to pass				
Question C	How does N-Acetylcysteine work in the treatment of paracetamol overdose?				
Knowledge:	Sulfhydryl group donor – restores hepatic reduced glutathione levels. Or acts as an alternative substrate for conjugation with the toxic metabolite.				
Notes:	Concept to pass				

TOPIC 1	X-ray - Lumbar spine	SUBJECT:	CBB	LOA:	n/a
STEM	A 60-year-old woman presents to ED with back pain after a fall. An x-ray of her lumbar spine is performed. We will start with the Clinical Building block				
Question A	Describe the X-ray.				
Knowledge:	Lateral Lumbar X-ray (T12-L5) L1 body Crush fracture, wedged in appearar Posterior elements appear intact No retropulsed fragments	nce			
Notes:	Crush fracture of L1				
Question B	What findings on examination would you lo	ook for?			
Knowledge:	Focal tenderness over spine Lower limb neuro exam looking for changes in tone, absent reflexes, loss of power, absent sensation Abnormal gait Cauda equina syndrome – anal tone (incontinence), urine retention Other injuries				
Notes:	3 to pass including 1 neuro				

TOPIC 2	Acute inflammation SUBJECT: Pathology LOA: 1					
STEM	Moving on to Pathology.					
Question A	Please describe the major components of acute inflammation.					
Knowledge:	 Small vessel dilatation - leading to increased blood flow Increased vascular permeability - enabling plasma proteins and leukocytes to leave the circulation Leukocyte emigration. Emigration of the leukocytes from the microcirculation, their accumulation in the focus of injury, and their activation to eliminate the offending agent. 					
Notes:	2 out of 3 Bold to pass					
Question B	What are the mechanisms responsible for increased vascular permeability?					
Knowledge:	 Contraction of endothelial cells – resulting in increased inter-endothelial spaces (most common) Direct endothelial injury – resulting in endothelial cell necrosis and detachment (burns, toxins, neutrophils themselves) Transcytosis – increased transport of fluids and proteins through the endothelial cell (may be stimulated by VEGF; contribution to acute inflammation is uncertain. 					
Notes:	2 out of 3 to pass					
Question C	i) What is chemotaxis of leukocytes?ii) What are the mediators that aid chemotaxis?					
Knowledge:	 Chemotaxis: locomotion/movement of white cells along a chemical gradient. After exiting circulation, leukocytes move in the tissues by chemotaxis toward the site of injury. Chemo-attractants include: a. Exogenous – most commonly bacterial products/proteins/peptides b. Endogenous – Cytokines (e.g. IL-8), complement (e.g. C5a), arachidonic acid metabolites (e.g. LTB4). 					
Notes:	Describe chemotaxis. 2 mediators					

ACEM PRIMARY VIVA B Friday Candidate Number: AGREED MARK:		Friday	Candidate Number:			
---	--	--------	-------------------	--	--	--

TOPIC 3	Neuromuscular Junction SUBJECT: Physiology LOA: 1			
STEM	You are concerned she may have some limb weakness. Moving on to Physiology.			
Question A	Describe the synthesis of acetylcholine at the neuromuscular junction?			
Knowledge:	Axer mining Mitochondrion Acetylcholine (ACh) is made from choline and every i CoA. Index from the symptic cleft In the symptic cleft Acetylcholine is transported back into the axon the enzyme is cleft to make more ACh. Index from the symptic cleft In the symptic cleft In the symptic cleft Index from the cleft Intersported Deck tho the axon the enzyme is cleft Index from the cleft Intersported Deck tho the axon the enzyme is cleft Index from the symptic cleft Intersported Deck tho the axon the enzyme is cleft Index from the symptic cleft Intersported Deck tho the axon the enzyme is cleft Index from the symptic cleft Intersported Deck tho the axon the enzyme is cleft Index from the symptic cleft Intersported Deck tho the axon the enzyme is cleft Intersport Intersported Deck tho the axon the enzyme is cleft Intersported Deck tho the axon the enzyme is cleft Deck tho the axon the enzyme is cleft Intersported Deck tho the axon the enzyme is cleft Deck tho the axon the enzyme is cleft Intersported Deck tho the axon the enzyme is cleft Deck tho the axon the enzyme is cleft Intersported Deck tho the axon the enzyme is cleft Deck tho the axon			
Notes:	Concept to pass			
Question B	Describe the sequence of events that leads to the release of acetylcholine at the neuromuscular junction			
Knowledge:	 1. Impulse arrives at the motor neuron ending which causes calcium voltage gated channels to open 2. Influx of calcium triggers release of Acetylcholine into the synaptic cleft 			
Notes	Concept to pass			
Question C	What happens to acetylcholine after release into the synaptic cleft?			
	 When vescicle releases ACh into the synaptic cleft, it is rapidly broken down into acetate and choline by the enzyme Acetylcholinesterase Choline is actively transported back into the presynaptic terminal to be reused ACh binds to Nicotinic receptors on the motor end plate leading to Na entry and a subsequent depolarising end plate potential Prompt: you may draw a diagram 			
Notes:	Concept to pass			
	What happens to acetylcholine after release into the synaptic cleft? 1. When vescicle releases ACh into the synaptic cleft, it is rapidly broken down into acetate and choline by the enzyme Acetylcholinesterase 2. Choline is actively transported back into the presynaptic terminal to be reused 3.ACh binds to Nicotinic receptors on the motor end plate leading to Na entry and a			

	Y VIVA B Friday Candidate Number: AGREED MARK:
TOPIC 4	Myotomes SUBJECT: Anatomy LOA: 1
STEM	Moving on to Anatomy. On examination, the patient has decreased lower limb reflexes and
Question A	sensation. What are the myotomes of the lower limb
Knowledge:	 Hip flexion L2/3, extension L4/5 Knee extension L3/4 flexion L5 /S1 Ankle flexion L4/5 extension S 1/2 Inversion L4 eversion L5/S 1 Big toe L5/S1 extension S1/2
Notes:	6 out of 10 to pass
Question B Knowledge: Notes:	Using this diagram show me the cutaneous nerve supply of the leg Important cutaneous Important cutaneous

ACEM PRIMARY	' VIVA B	Friday	Candidate Number:		AGREED MARK:	
TOPIC 5	Tricyclio	c anti-depressants	SUBJEC	T: Pharmacology	LOA: 1	
STEM	The pat	tient was taking am	itriptyline for pain.			
Question A	What is	the mechanism of	action of tricyclic anti-dep	ressants.		
Knowledge:	 Inhibition of serotonin (5-HT) and noradrenaline/norepinephrine (NE) reuptake. This increases the amount of 5-HT and NE in certain parts of the brain (cortex and limbus) – "Monoamine hypothesis for depression" – and spinal cord (ascending corticospinal tract – neuropathic pain). Also blocks Na+ channels K+ channels K+ channels Histaminic (M1) receptors – anti-cholinergic Histaminic (H1 receptors) Alpha-1 adrenergic receptors (peripheral post-synaptic) (From toxicology handbook) 					
Notes:	Bold to	pass and one other	r			
Question B	What clinical manifestations would be seen in an overdose of tricyclic anti-depressants?					
Knowledge:	2.	c. ECG – PR p CNS a. Drowsines b. Delirium (d c. Seizures d. Coma Anti-cholinergic a. Agitation b. Delirium c. Mydriasis	on (alpha blockade, impair prolonged, widened QRS (N ss due to anti-cholinergic effe 1, flushed skin	a blockade), prolo	nged QT (K blocka	de), VT, VF
	One ex	ample of each syste				

Candidate Number:

Question 1	a) Describe the image.	a) Swollen and erythematous right side face near angle of mandible.	Bold to pass
Photo of face	b) List possible differential	b) Trauma: soft tissue injury, mandible #, dental injury	1 infectious cause plus 2 others (1
	diagnoses	Infection: cellulitis, sialadenitis (parotid, submandibular), lymphadenitis, skin	non infectious)
Subject: CBB	<i>Prompt:</i> any other etiologies (non infectious)?	abscess, dental abscess Tumour: lymphoma, LN met, salivary gland	
Stem: Moving	onto Anatomy.		
Question 2 Mandible (bone)	a) Demonstrate the features of this bone.	a) Body, angle, ramus, condyle (includes head & neck), coronoid process, pterygoid fossa, mandibular notch, lingula, mylohyoid groove, submandibular fossa, sublingual fossa, symphysis, mental protuberance, alveolar processes,	4/5 Bold plus 1 other
Subject: Anatomy	b) Which nerve passes within this bone and demonstrate the entry and exit points.	mental tubercles, digastric fossa, mental spines b) Inferior alveolar nerve enters mandibular foramen, (within mandible supplies mandibular teeth), and exits mental foramen as mental nerve (supplies skin + mucous membranes lower lip, skin of chin.	Bold to pass
LOA: 1	c) What nerve does the inferior alveolar nerve arise from?	c) Mandibular nerve (V3 – 3 rd branch of trigeminal n)	
Stem: Moving	onto Pathology. The most likely dia	gnosis is acute parotitis.	
Question 3	a) Describe the vascular changes in acute inflammation	a) • Vasodilatation: opening of arterioles and capillary beds mediated by histamine and nitric oxide (NO) leading to increased blood flow	all 3 bold to pass
Inflammation		Increased vascular permeability Steeler due to plasma protein permeability and increased viscosity	
Subject: Path	b) What are the mechanisms responsible for increased	 Stasis: due to plasma protein permeability and increased viscosity b) • Endothelial contraction / retraction: gaps in venules due to histamine, bradykinin and leukotrienes , causing immediate transient response (lasting 15 - 	2 out of 4 to pass
LOA: 1	vascular permeability in inflammation?	30 mins). Other stimuli (eg UV radiation, burns, some bact toxins) result delayed prolonged leakage (delay 2-12 hrs and may last hrs to days)	
		• Direct vascular endothelial injury (eg. in severe burns, microbial toxin injury), rapid onset but may last days	
		 Leukocyte mediated leakage: in venules and pulm capillaries, long lasting (hrs) Trancytosis : increased transport of fluid and protein thru endothelial cells, 	
	c) Describe the role of	VEGF increases number +/- size transport channels c) >20 proteins (incl C1-9) – once activated, trigger cascade	2 out of 3 to pass
	complement in inflammation	 Recruitment and activation of lymphocytes (C3a, C5a) – inflammation trigger 	
		 Formation Membrane Attack Complex (MAC) – causing cell lysis Phagocytosis (C3b) – Phagocyte recognizes C3b bound to microbe. 	

Question 4	a) Describe the neural	a) Retina, optic nerve, optic chiasm, optic tract, lateral geniculate body	Bold to pass
Visual	connections of the visual	(thalamus), geniculocalcarine tract, primary visual cortex (occipital lobe). At	
pathways	pathways.	optic chiasm, nasal fibres decussate to the contralateral side.	
Subject:		Other connections: - Optic tract (via superior colliculus) to pretectal midbrain, then to Edinger-	
Phys		Westphal nuclie in oculomotor nerve (pupillary reflexes, eye movement)	
1 1195		- Frontal cortex (refined eye movement - vergence, near point response)	
LOA: 1		- Retinal ganglion cells to suprachiasmatic nucleus hypothalamus (endocrine &	
		circadian responses to day/night cycle)	
	b) Why is the fovea important	b) Point where VA greatest ; fovea is the centre of the macula, a thinned out rod-	One of bold plus one other to pass
	for visual acuity?	free portion of the retina where the cones are densely packed & each synapses	
		on a single bipolar cell, which, in turn, synapses on a single ganglion cell, providing a direct pathway to brain	
	c) What ocular factors influence	c) Optical factors : state of the image-forming mechanisms eg cataracts, keratitis,	3 factors
	visual acuity?	astigmatism, myopia, hyperopia	
		Retinal factors eg the state of the cones, retinopathies, optic neuritis	
		Stimulus factors eg illumination; brightness of the stimulus; contrast between	
		stimulus and background; length time exposed to stimulus)	
Stem: Moving	g onto Pharmacology. He is given mo	prphine for his pain.	
Question 5	a) Can you define potency?	a) The amount of drug required to produce an effect of certain intensity.	Refers to amount/conc required for
.	Prompt:	Refers to the concentration (EC50) or dose (ED50) of a drug required to produce	a given effect.
Potency and	What does ED50 or EC50 refer to?	50% of that drug's maximal effect. Dependent on affinity of drug for receptor and number of receptors available.	Bold to pass
efficacy Subject:	b) Can you define efficacy?	b) Maximal effect a drug can produce when all receptors are occupied,	Bold to pass
Pharm	b) can you define effeaty?	irrespective of conc required to produce that response (or irrespective of dose).	
		Determined by the drug's mode of interactions with receptors or by	
LOA: 1		characteristics of the receptor-effector system involved.	
	c) Show the difference between	c) A and B have similar potency. A&B are more potent than C which is more	Draw graph, & explain, correct axes
	efficacy and potency by drawing	potent than D for mild to moderate responses/effects.	~ (
	graded dose response curves.	A, C & D have similar efficacy and greater efficacy than B. B is a partial agonist (producing less than full response despite full receptor	°/°
		b is a partial agonist (producing less than run response despite run receptor	8
			odsa B
		occupancy)	Pendo
	Optional if time allows		here
	<i>Optional if time allows</i> Compare the potency of morphine to fentanyl.	occupancy)	Eng drug dose FIGURE 2-15 Graded dose-response curves for four drugs, illus-

Candidate Number:

Stem: A 70-ye	ear-old diabetic man is being treated for sepsis from a	an ulcer on his foot. We will start with Anatomy.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Foot (bone)	a) Identify the bones of the foot	a) Talus, Calcaneus, Cuboid, Navicular, Cuneiforms (medial, intermediate, lateral), Metatarsals, Phalanges	At least 6 out of 7
Subject Anat LOA: 1	b) Demonstrate the attachments of the medial collateral ligament (deltoid ligament)	b) Posterior tibio-talar (to medial tubercle of talus) Tibio-calcaneal (to calcaneal shelf = sustenaculum tali) Tibio-navicular (to tuberosity of navicular) Anterior tibio talar	2/4 to pass
	c) Describe the structures running immediately posterior to the medial malleolus	c) Tibialis post tendon, flex digit long tend, post tibial art and vn, posterior tibial nv, flexor hall long tendon	2 tendons and post tibial art to pass
Stem: Some b	blood tests are taken upon arrival		
Question 2 Blood tests	a) Describe the abnormalities	a) Slightly low/normal sodium (or Extra: corrected Na 137), Hyperkalaemia, low bicarb (met acidosis) , Renal failure (likely intra-renal with chronic component), hyperglycaemia	Bold
Subject CBB	b) What could cause these abnormalities in this patient?	b) Sepsis, diabetic nephropathy, dehydration, drug toxicity, DKA	At least two
Stem: Moving	g onto Physiology. His urinalysis shows a pH of 6.0.		
Question 3 Renal - H+ handling	a) Where does the acidification of the urine occur? (Prompt : where is hydrogen secreted in the kidneys?)	a) Proximal and distal tubules, and collecting ducts	2 of 3
Subject: Phys LOA: 1	b) How is H+ secreted in each of those areas?	b) Proximal tubule – Na-H exchange transporter (one Na and one HCO ₃ reabsorbed for each H secreted) Distal tubule and collecting duct – the secretion of H+ is independent of Na. ATP driven proton pump - stimulated by aldosterone. Also H-K ATPase pump, and anion exchanger 1.	Na-H and 1 mechanism in DCT/ CT
	c) What is the limiting pH of urine and where is it reached?	 c) The limiting pH is 4.5 (1000x concentration in plasma). It is the maximal H+ gradient that can be achieved in the tubules. It occurs in the collecting duct. Possible due to buffers (bicarb, dibasic phosphate and ammonia) 	Bold

Question 4	a) What class of antibiotic is Gentamicin?	a) Aminoglycoside	Bold
Gentamicin Subject: Pharm	b) What is its mechanism of action?	b) It acts by binding to the 30S ribosomal proteins - inhibiting protein synthesis in the bacteria. Bactericidal – gram neg. Concentration dependent killing. Post antibiotic effect.	Bold
LOA: 1	c) Please describe the pharmacokinetics of Gentamicin?	 c) Route: parenteral (IV or IM), inhalation, topical Distrib: Small Vd because < 10% protein bound Metab: not metabolised. Elim: renal dependent. Glomerular filtration. T1/2 = 2-3 hours, typically given once daily 	Bold plus 2 others
	d) What are the advantages of single daily dosing regimen for Gentamicin	d) ↓ toxicity time and concentration dependent killing – once daily results in less time above toxic threshold concentration. OP therapy, Cost effective	Bold Bold
	e) What are its adverse effects?	e) Nephrotoxic Ototoxic Prolongs NM blockade	
Stem: Moving	g onto Pathology. He has confirmed Gram Negative	sepsis.	
Question 5 Gram-negativ sepsis	a) What are the mechanisms of Gram negative sepsis?	a) Combination of direct microbial injury and activation of host inflammatory responses e.g. by endotoxins (lipid A, O Ag)	Bold
Subject: Path LOA: 1	Prompt :what other immune components are involved?" Prompt : what other blood components are involved?"	 Inflammatory mediator release TNF, IL (1, 6,8,10), PGs, NO, PAF, reactive O2 species, PAI-1 (Plasminogen activator inhib 1) Activation innate cells of immune system- neutrophils. macrophages and monocytes Humoral interaction to activate complement and coagulation pathways Direct endothelial injury and activation Metabolic abnormalities (insulin resistance and hyperglycaemia, glucocorticoid excess/def) Immune suppression (activation counter-regulatory mechanisms with anti-inflamm mediators, lymphocyte apoptosis, hyperglycaemia inhibits neutrophils) 	2 of 6
	b) What are the potential outcomes of septic shock?	End organ and systemic dysfunction, incl a) Cardiomyopathy b) Hypotension c) ARDS d) DIC e) Renal failure f) MSOF g) Death	3 of 7

ACEM PRIMARY VIVA A Friday Morning

Candidate Number:

Question 1	old man falls while mountain climbi Describe his CT brain.	Transverse/axial CT brain slice (level of third ventricle)	Bold to pass
CT Brain		Right acute extradural haematoma (frontal region) – lenticular shape	
or brain		No midline shift, raised intracranial pressure	
Subject: CBB			
<u> </u>			
-	to Anatomy. X-rays reveal a fractu		
Question 2	a) Describe the main visible	a) Correct side	Bold plus 2 others to pass
Humerus (Bone)	features of this bone.	Proximal: Head, Anatomical & surgical neck, Greater tuberosity/ Lesser tuberosity (major attachment areas for rotator cuff/deltoid), intertubercular groove (long head	
Subject: Anat		biceps), shaft, radial groove on shaft (radial nv, profunda brachii art), deltoid tuberosity	
		Distal: Lateral (ext origin) and medial (flex origin) epicondyle (ulna nerve inf), coronoid,	
LOA: 1		radial and olecranon fossa, capitulum, trochlea	
	b) How does this bone	b) Glenohumeral joint	Must explain humeral head
	articulate with the scapula?	Ball and socket	in contact with glenoid cavit
		 Articular surface of humeral head in contact with shallow surface of glenoid 	
		cavity (deepened by glenoid labrum).	
	c) What anatomical features	c) Joint capsule with fusion of the tendons of the scapular/rotator cuff muscles (pull	3/6 bold to pass
	contribute to the stability of the	humerus into glenoid)	
	shoulder joint?	Ligamentous: Glenohumeral and coracohumeral ligaments	
		Coracoacromial arch superiorly created by coracoacromial ligament	
		Deepening of glenoid cavity by glenoid labrum	
		Tendons of biceps and triceps (long head)	
	to Pharmacology. He is on clopidog		
Question 3 Clopidogrel	a) What is the mechanism of action of clopidogrel?	a) Anti-platelet effect by inhibiting ADP pathway (irreversible blockade ADP receptor on platelet for life of platelet).	Bold to pass
Subject: Pharm	b) Describe the	b) A prodrug , metabolised to a pharmacologically active metabolite and inactive	2/6 Bold to pass
	pharmacokinetics of	metabolites. Activated in liver by cyto P450 (including CYP2C19). 80% platelet activity	
	clopidogrel.	inhibited within 5 hrs oral dose.	
LOA: 1		Elimination t ½ ~ 0.5 to 1.0 h. Effects last life of platelet	
		Following an oral dose: 50% excreted in the urine and 46% in the faeces in next five	
		days. Loading dose 300 - 600mg or 75mg daily	
	c) What are the adverse effects?	c) - bleeding, rash, (rarely - pancytopaenia & TTP)	Bold plus 2 others
		- diarrhoea, abdominal pain, reflux, gastric ulcers	
		- sensation of tingling, numbness	

Question 4	a) What are the initial	1. Hyperventilation : decreases $CO_2 > O2$	3/5 to pass
High Altitude	physiological responses at high altitude?	2. Alkalosis : limited by movement of bicarbonate from CNS (1-2 days) and renal excretion HCO ₃	
Subject: Phys		 Increased 2,3-DPG – R shift O₂-Hb dissociation curve (early), then left shift at higher altitudes due alkalosis 	
LOA: 1		 Alveolar hypoxia induces pulm vasoconstriction, then pulmonary HTN Decreased work of breathing 	
	b) What are the longer-term physiologic effects of altitude exposure?	 Polycythaemia (incr EPO) Incr viscosity of blood Increased O₂ carriage Pulm HTN resulting in RVH More capillaries Increased oxidative enzymes. Increased mitochondria 	3 to pass
	nes shocked. Moving onto Pathology		
Question 5 Haemorrhagic Shock	a) Define shock	Tissue hypoperfusion due either1 Reduced Cardiac Output, or2 Reduced effective Blood volume	Bold to pass plus 1 or 2.
Subject: Path LOA: 1	 b) Describe the stages of haemorrhagic shock Prompt : describe what happens during each stage? 	 Non-progressive – reflex compensatory mechanisms maintain vital organ perfusion Progressive – tissue hypo-perfusion and onset metabolic disturbances (lactic acidosis) Irreversible – non reversible tissue and cellular injury, MOF 	All 3 stages to pass plus some detail for each
	c) Describe initial clinical presentation of shock	Narrowed pulse pressure / 个CPR time / Tachycardia / Hypotension / Tachypnoea /Cool Clammy Skin / Cyanotic Skin / Oliguria / Altered mental state	3/5 to pass
	 d) What other types of shock are there – with an example of each? 	Distributive (septic, anaphylactic), Obstructive (PE, PTX, tamponade), Cardiogenic (MI, cardiomyopathy, arrhythmia), Neurogenic (spinal trauma), Dissociative (poisoning), Hypovolaemic (burns, GI losses)	3 to pass

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 ABG Subject: CBB ABG	 a) Please describe the abnormalities b) What conditions could cause this result in this patient? 	 a) Alkalaemia CO₂ low, thus primary respiratory alkalosis Low PaO₂ and SaO₂ – profound hypoxaemia Raised A-a gradient Conclusion: Hypoxia leading to hyperventilation and respiratory alkalosis b) Any NON central causes (infection, asthma, PE, pulm oedema etc) 	Bold to pass Two causes to pass
Stem: Moving on to	Physiology.		
Question 2 V/Q inequality Subject: Physiology LOA: 1	 a) Describe the normal relationship between ventilation and perfusion in an upright lung. Prompt 1: How does gravity affect the ventilation & perfusion in the lung? b) What conditions can increase V/Q mismatch? c) Which tests can be done in clinical practice to demonstrate a V/Q mismatch? Prompt 3: Is there a calculation we can perform on the ABG we had earlier? 	 a) Pulmonary circulation is affected by gravity. a. Apex: Less blood flow, larger alveoli, slightly less ventilation; ventilation > perfusion, high V/Q ratio. b. Middle: ventilation = perfusion, V/Q = 1 c. Base: More blood flow, smaller alveoli, more ventilation; perfusion > ventilation, low V/Q ratio. b) Pulmonary embolism (high V/Q ratio), pulmonary oedema, pneumonia, emphysema (low V/Q ratio). c) A-a gradient (also V/Q scan, CTPA) 	Candidate may draw graphs in West, Chapter 5 Bold plus concept
Stem: Moving on to	Pathology. You suspect this patient has pul	monary emboli.	
Question 3 Pulmonary embolism Subject: Pathology LOA: 1	a) Describe the pathogenesis of thrombotic pulmonary embolism (PE). Prompt: Where do PEs originate? Prompt: Where do they lodge?	a) PEs originate from deep vein thrombosis . (~95% from lower limb). Fragmented thrombi from DVTs are carried through the venous system and into the right side of the heart before lodging in the pulmonary arterial vasculature: main pulmonary artery, pulmonary artery bifurcation or smaller branching arteries.	Bold to pass

Robbins and Cottran	b) What are the symptoms and signs of	b) Clinical manifestations depend on size and location of the thrombus	
	pulmonary embolism?	in the pulmonary vasculature.	5 of list to pass
P 127 to 129		-Most PEs (60-80%) are small and produce no symptoms nor signs	
		A. Positive Symptoms	
		- Chest pain	
		- Dyspnoea	
		- Collapse/syncope	
		B. Positive Signs	
		- Hypoxaemia/ tachypnoea	
		- Tachycardia	
		- Hypotension	
		- Shock / sudden death	
		- Acute right heart failure	
	c) List 2 other types of emboli.	c).	2 to pass
		- Fat (bone marrow)	
		- Air/other gas	
		- Amniotic fluid	
		- Foreign body (eg fragment of catheter)	
Stem: Moving on to P	harmacology. The patient becomes haemodyna		
Question 4	a) What are the classes of thrombolytic	a) t-PA (tissue plasminogen activator e.g. alteplase, tenecteplase,	Bold to pass.
	agents?	reteplase) and streptokinase (a protein synthesized by streptococci).	Candidates may draw
Thrombolytics	Prompt: What are the 2 classes?		diagram (Katzung, 11th Ed,
	b) What is the mechanism of action of	b) t-PA is an enzyme that directly converts plasminogen to plasmin .	fig 34-2, p280).
Subject:	tissue plasminogen activator (t-PA)?	Plasmin is the major fibrinolytic enzyme.	Bold to pass.
Pharmacology			
	c) What are the adverse effects of	c) Bleeding – cerebral haemorrhage, gastrointestinal, previous	Bold to pass.
LOA: 1	thrombolytic agents?	surgery/wounds	
		Allergy (especially streptokinase)	
Stem: Moving on to A	natomy. It is decided to insert an internal jugula	r central line. Here is a photo of the thoracic inlet and mediastinum.	
Question 5	a) Please identify its main features	a) Thoracic inlet structures (numbered):	Bold to pass plus 3 others
Thoracic inlet and	(demonstrate and/or identify by	2 Cricoid cartilage 3 Ascending cervical artery	
mediastinum	number)	4 Brachiocephalic trunk 7 Inferior thyroid veins	
(photo, McMinn's	, ,	8 Internal jugular vein 11, 12 thyroid gland (isthmus, lateral lobe)	
7 th Ed page 206)		13 Left brachiocephalic vein 14 Left common carotid artery	
		17 Phrenic nerve 18 Right brachiocephalic vein	
Subject: Anatomy		19 Right common carotid artery 20 Recur laryngeal n	
		21 Right subclavian artery 22 Right vagus nerve	
LOA: 2 (root of neck)		23 Scalenus anterior 24 Subclavian vein; 26 Superior vena cava	
		31 Thymus; 32 Thyrocervical trunk; 33 Trachea	
	b) What structures do you need to avoid	35 Upper trunk of brachial plexus	
	when placing an internal jugular central line?	b) Common carotid artery , apex of lung, vagus nerve, oesophagus	Bold to pass

ACEM PRIMARY VIVA A Thursday Afternoon

Candidate Number:

Stem: A 73 year	Stem: A 73 year old man presents in acute urinary retention. We will start with Anatomy				
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES		
Question 1 Genitourinary	a) Identify the structures on this model.	a) Bladder, coccyx, corpus cavernosum, deep dorsal vein of penis, ductus deferens, prostate, prostatic urethra, pubic symphysis, rectosigmoid junction, rectovesical pouch, testis, epididymis, tunica albuginea, tunica vaginalis, penile	Bold plus 3 others to pass		
tract (Model Male Pelvis Subject: Anatomy LOA: 2	b) Describe the parts of the male urethra	urethra b) - intramural part (pre-prostatic) – surrounded by internal urethral sphincter (within bladder neck) prostatic part (widest part, receives prostatic and ejaculatory ducts) - intermediate (membranous) part – surrounded by external urethral sphincter (narrowest and least distensible part except for external urethral orifice) - spongy (penile) part with intrabulbar fossa proximally and navicular fossa distally	Bold		
	c) What is the innervation of the urethra? (bonus question)	 c) prostatic nerve plexus (arising from inferior hypogastric plexus) to first 3 parts above - dorsal n. of the penis (from pudendal n.) to spongy part 	No pass criteria as bonus question		
Stem: Moving on	to Pathology. His urinary retention is caused by	benign prostatic hyperplasia.			
Question 2	a) What is hyperplasia?	a) ↑number of cells in organ/tissue → usually ↑mass	Bold		
Hyperplasia Subject : Pathology Robbins 9 th edition pages 35- 36 LOA: 1	 b) What are the different types of hyperplasia and give examples (Prompt: Types other than BPH) c) Apart from urinary retention, what are the clinical features of BPH? 	 b) Physiologic a. Hormonal: female breast at puberty & preg b. Compensatory: post-partial hepatectomy, skeletal muscle with increased workload Pathologic a. Excess hormones: BPH, DUB b. Viral infection – papillomavirus c) Frequency, nocturia, difficulty in starting and stopping stream, dribbling, dysuria, ↑risk of infections 	Bold plus one example in each category to pass		

Stem: Moving on t	to Pharmacology. He is on Prazosin.		
Question 3	a) What is the mechanism of action of	a) Prazosin selectively blocks alpha-1 receptors in arterioles and venules.	Bold
	prazosin?	Reduces arterial pressure by dilating both resistance and capacitance vessels.	
prazosin/alpha	Prompt: Which receptors does prazosin bind	Alpha ₁ -receptor selectivity allows noradrenaline to exert unopposed negative	
blockers	to?	feedback (mediated by presynaptic α_2 receptors) on its own release.	
	Prompt: How does prazosin reduce blood		
Subject: Pharm	pressure?		
•	b) List 3 other effects of prazosin.	b) Postural hypotension /dizziness / syncope	3 to pass
LOA: 1	Prompt: What are the side effects of	- Reflex tachycardia / palpitations	
	prazosin?	- Headache	
Katzung and		- Lassitude	
Trevor 13 th ed,		- Reduced prostate smooth muscle tone, thus alleviating prostatic urinary	
chap 11.		obstruction	
		- Positive serum antinuclear factor	
		- ↓LDL & TGs and 个HD	
Stem: Here are his	blood results.		
Question 4	a) What are the abnormalities and	a)AKI (or ARF), hyperkalaemia	Bold
Question	what is your interpretation?		Bold
EUC/renal failure	b) What are the broad categories of	b)Pre-renal, renal, post-renal	
	renal failure? Please provide an		
Subject: CBB	example of each		
Subject. CBB	c) Which is most likely in this man?	c)Post-renal	
Stom: Moving on t	to Physiology of the kidney.		
Question 5	a) Where does Na reabsorption occur	a) Primarily (60%) PCT by Na-H exchange but also a range of co-transport	2 out of 5 described
Question 5	in the nephron?	 a) Primarily (60%) PCT by Na-H exchange but also a range of co-transport (gluc, AA, lactate) 	correctly including
Donal regulation			
Renal regulation		- 30% thick asc limb of LoH (Na –K-2Cl co-transporter, Na-H exchange)	bold to pass
sodium		- Nil at thin part of LoH	
C 1.1		- 7% DCT (NaCl co-transporter)	
Subject:		- 3% collecting ducts through Na channels (ENaC)	
Physiology			
1011	b) How is Na transported from the	b) Na/K ATPase active transport. (3Na/2K) across basolateral membrane	Bold
LOA 1	tubular cell into the interstitium?	predominantly into the lateral intercellular spaces.	
	c) Following high Na intake, what	c) A slight increase in ECF occurs triggering various mechanisms:	2 mechanisms
	mechanisms act to enhance Na excretion?	- stretch receptors in RA and pulm veins \rightarrow inhibits sympathetic outflow to kidneys \rightarrow decreased Na reabs	
	Prompt: What mechanisms reduce Na	- small increase in arterial pressure \rightarrow pressure natriuresis	
	reabsorption?	- suppression AT-II formation	
	Prompt: Can you describe any mechanisms	- reduced aldosterone secretion secondary to reduced AT-II formation	
	mediated outside the kidney?	- stimulation of ANP	

ΤΟΡΙϹ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Carotid artery (McMinn's	a) What are the boundaries of the anterior triangle of the neck	a) Anterior border of sternocleidomastoid, lower border of the mandible and the midline	All correct
Photo of Anterior triangle of Neck, 7 th edition, page 29)	b) Identify the major Neurovascular structures on this photo.	b) Common Carotid artery (8) External Carotid artery (11) Internal jugular vein (22) Vagus nerve (63)	Bold to pass
Subject: Anatomy LOA: 1	c) Discuss the anatomy of the right common carotid artery.	 c) Right Common Carotid: begins at the bifurcation of the brachiocephalic trunk behind the sternoclavicular joint into common carotid and subclavian arteries. In the neck it lies within the medial part of the carotid sheath, internal jugular vein lateral to it and the Vagus nerve deeply placed between the two vessels. The common carotid bifurcates at the level of the upper border of the lamina of the thyroid cartilage (upper border of C4 vertebrae into the external and internal carotid arteries. 	3 out of 5 bold t pass
Stem: An ECG w	as obtained	•	
Question 2	a) Describe and interpret the ECG	a) Narrow complex tachycardia Rhythm: irregularly irregular – atrial fibrillation	Bold to pass
ECG – AF Subject : CBB	b) What other types of narrow complex tachycardia	 Rate 135/min (125-145) No P waves b) PSVT, Re-entrant pathway (e.g. WPW), atrial flutter, sinus tachycardia 	2 to pass

	on to Physiology	P	Ť
Question 3	a) Describe the normal	a) SA node (pacemaker)	6 of 8
	cardiac conduction pathway	Atria (3 internodal pathways)	Bold to pass
Conducting		AV node; Bundle of His; Right and left bundle branch	
system		Anterior and posterior fascicles on left	Prompt: what is
		Purkinje fibres	happening
Subject:		Ventricular muscle: left side of IV septum first, spread down septum to apex,	electrically?
Physiology		Up AV grooves, spread from endocardial to epicardial surfaces	
		- P wave: Atrial depolarisation	
LOA: 1		- QRS complex: Ventricular depolarisation	
		- T wave: Ventricular repolarisation	
		NB: atrial repolarisation is not represented because it is buried in the QRS	
		complex.	
	b) This is a normal ECG		Bold
	complex. What does each	В	Need approx.
	wave of the ECG represent?		correct shape of
	c) Draw and describe the	0-	curve and approx
	action potential of a cardiac	↑I _{Ca} L	potential values
	pacemaker cell		
		-40 -	
		-60 - II TICaT	
		LI _K	
		Jarman, Scott Boltano, Heddwen L. Brooks: Ganong's Review of Medical Physiology, 25th Ed.	
		1. All rights reserved.	
		1. Pre-potential is initially due to a decrease in K ⁺ efflux, then completed by	
		Ca ²⁺ influx through CaT channels (prepotential).	
		2. The action potential is due to influx of Ca²⁺ via CaL channels.	
		3. Repolarisation is due to K ⁺ efflux	

Stem: Moving o	Stem: Moving on to Pharmacology. Intravenous fluids are commenced.				
Question 4	a) What are the different classes of intravenous fluid,	a) 1.Colloid Albumin	3 examples and 2 classes		
Intravenous fluids Subject: Pharmacology	give an example of each.	Dextran Gelatin 2. Crystalloid Isotonic: Normal saline, Hartman's, Plasmalyte			
LOA: 1	b) How does the electrolyte composition of normal saline differ from Hartmann's?	 Hypertonic Saline: 3% or 7.5% NaCl Hypotonic: 0.45% NaCl, Dextrose (5%, 10%) 3. Blood and blood products b) Normal Saline: Na 154 mmol/L, Cl 154 mmol/L Hartmann's: Na 130mmol/L, Cl 112mmol/L, K 5.4mmol/L, Ca 1.8 mmol/L, Lac 27mmol/L 	Accept 150 to 160 At least 2 of bold plus understanding		
	c) What are the complications of crystalloid fluid therapy?	 c) Acute pulmonary oedema Hypothermia Dilutional coagulopathy Acidosis Tissue oedema limb and abdominal compartment syndromes Electrolyte abnormalities Extravasation 	of lower [Na] 3 to pass		

Stem: Moving on to Pathology. His TIA is most likely embolic.				
Question 5	a) What is an embolus?	a) An embolus is a detached intravascular solid, liquid or gaseous mass that is carried by the blood to a site distant from its point of origin.	Bold to pass	
Empolism	b) Name the	b) Thromboembolus	3 out of 5 to pass	
Subject:	different types of	Venous: pulmonary		
Pathology	emboli	Arterial: systemic		
Tuthology	Prompt: what can	• Fat embolus		
LOA: 1	embolise?	• Gas embolus		
		Amniotic fluid embolus		
		• Air embolus		
	c) What is systemic thromboembolism?	c) Systemic thromboembolism refers to emboli in the arterial circulation.	Bold	
	(d) Name the sources	d) Most (80%) arise from intracardiac mural thrombi, two thirds of which are	Bold plus one	
	of systemic	associated with left ventricular wall infarcts and another quarter with left atrial	other	
	thromboembolism?	dilation and fibrillation.		
		The remainder originate from aortic aneurysms, thrombi on ulcerated		
		atherosclerotic plaques or fragmentation of a valvular vegetation, with a small		
		fraction due to paradoxical emboli.		
		10 to 15% of systemic emboli are of unknown origin.		
	<i>Bonus question</i> What are the	Venous thrombi tend to lodge primarily in one vascular bed (the lung).		
	differences in the	Arterial thrombi can travel to a wide variety of sites; the point of arrest depends on		
	lodgement of venous	the source and the relative amount of blood flow that downstream tissues receive.		
	and arterial thrombi?	Major sites of arterial embolization are the lower extremities (75%) and the brain		
		(10%), with the intestines, kidneys, spleen and upper extremities involved to a lesser extent.		

Candidate Number:

ΤΟΡΙϹ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Venous gas	a) Please describe this blood gas.	a) Alkalaemia, Hypocarbia, Positive base excess	Bold to pass
Subject: Clinical	b) What is the abnormality	b) Acute respiratory alkalosis	Bold
Building block	c) What are possible causes for	c) Hypoxia induced (Pneumonia, PE, asthma)	One from each
LOA: 1	this abnormality in this patient?	Increased respiratory drive (CNS, Hypermetabolic states, environmental, drugs)	category
Stem: Moving on	to Anatomy. A Chest X-ray shows a	a large spontaneous pneumothorax. A chest drain is to be inserted.	
Question 2	a) Demonstrate the parietal	a) Both sides start at supraclavicular fossa.	Demonstrate
	pleural reflections on this normal	Right - Travels inferomedially behind middle of sternum (anterior median line) to level of 6 th	understanding &
Normal CXR	chest x-ray.	costal cartilage, behind xiphoid process.	differences betweer
		Moves laterally reaching:	right and left side
Subject:		- midclavicular line at 8 th rib	
Anatomy		- midaxillary line (MAL) at 10 th rib	
		- paravertebral line at 12 th rib	
_OA: 1		Left	
Moore 7 th ed,		- Descends in anterior median line to 4 th costal cartilage	
page 110 to 120	b) What is the preferred point of insertion of a lateral chest drain? What are the anatomical	- Then laterally to 6 th costal cartilage, creating a notch due to contact with pericardium	Bold
		b) 4 th or 5 th intercostal space just above the superior border of the rib. Mid-axillary line.	
		Posterior: Anterior border of the latissimus dorsi	
		Anterior: Lateral border of the pectoralis major muscle	
	structures that border this area?	Inferior: Line superior to the horizontal level of the nipple	2 of 4 to pass
	c) Which anatomical structures may be injured if it is inserted outside this area.	Superior: Apex of axilla	
		c) Too far anterior: breast tissue, chest wall muscle	
		Too far posterior: long thoracic nerve	Bold
		Too far inferior: perforation of diaphragm and puncture of intra-abdominal organ	

Question 3 Bronchiectasis	a) What is bronchiectasis? Prompt: what are the major morphological features?	a) Bronchiectasis is a disease characterised by permanent dilation of bronchi and bronchioles caused by destruction of the muscle and elastic tissue , resulting from or associated with chronic necrotizing infections . Also scarring and persistent infections	Bold concepts to pass
Subject: Pathology LOA: 1	b) What conditions are associated with the development of bronchiectasis?	b) <u>Congenital/hereditary</u> = Cystic fibrosis, immunodeficiency, ciliary dyskinesia, Kartagener's <u>Post infectious (necrotising pneumonia)</u> = Staph aureus, Haemophilus; TB, Pseudomonas; adenovirus; HIV, Influenza, fungi, aspergillosis <u>Bronchial obstruction</u> = tumour, foreign body, mucous impaction <u>Other:</u> Rh Arthritis, SLE, Inflam bowel disease, post transplantation Idiopathic 25 -50%	4 causes
Stem: Moving o	nto Physiology. She is tachypnoeic.		
Question 4 Control of ventilation	a) What parts of the brain control respiration?	a) Voluntary - Cerebral cortex . Automatic – Medulla (Pacemaker cells in pre-Botzinger complex). Pons – pneumotactic centre modifies medulla activity.	Bold to pass
Subject: Physiology LOA: 1	b) How are chemoreceptors involved in the control of ventilation?c) What other sensors are involved in the control of ventilation?	 b) Chemoreceptors – central and peripheral <u>Central</u> (ventral surface medulla) - sensitive to changes in H+. CO2 readily penetrates BBB and enters CSF and brain interstitial fluid. Increased CO2 causes increased H+ in CSF, stimulating ventilation. <u>Peripheral</u> (carotid and aortic bodies) – fast response to decreasing O2, stimulating bodies. Decreased pH causes carotid response only. Minor response to CO2. c) <u>Pulmonary</u> - <u>Stretch</u> receptors in lungs, muscles, joints, <u>Irritant</u> receptors in airways, <u>J</u> receptors. <u>Irritant</u> receptors in nose and upper airways <u>Baroreceptors</u> (arterial, atrial. Ventricular, pulmonary) – stimulation may cause reflex hypoventilation <u>Pain/temperature</u> – may cause initial apnoea, then hyperventilation <u>Proprioceptors</u> (muscle spindles from intercostals and diaphragm, other muscles/tendons/joints. 	Bold and concept for response to CO2/O2. 3 examples

Stem: Moving onto Pharmacology. She is given Ibuprofen to help treat her pain					
Question 5	a) Describe the pharmacokinetics of	a) NSAIDs well absorbed, food does not substantially change their bioavailability. Highly protein bound	2 to pass		
NSAIDS	ibuprofen.	Highly metabolised by liver – Cytochrome P450.	Bold to pass		
Subject: Pharmacology LOA: 2	b) Describe the pharmacodynamics of Ibuprofen.	 b) Inhibition of prostaglandin biosynthesis. Additional possible mechanisms of action, including inhibition of chemotaxis, down-regulation of interleukin-1 production, decreased production of free radicals and superoxide, and interference with calcium-mediated intracellular events. NSAIDs are reversible inhibitors of COX Anti-inflammatory, antipyretic and analgesic. 			
	c) What are the side effects of NSAIDs?	 c) Central nervous system: Headaches, tinnitus, and dizziness. CVS: Fluid retention, hypertension, oedema, and rarely, myocardial infarction, and congestive heart failure. GIT: Abdominal pain, dyspepsia, nausea, vomiting, ulcers or bleeding. Renal: Renal insufficiency, renal failure, hyperkalaemia, and proteinuria. Haematologic: Rare thrombocytopenia, neutropenia, aplastic anaemia. Hepatic: Abnormal liver function tests and rare liver failure. Pulmonary: Asthma. Skin: Rashes, all types, pruritus. 	At least 4 side effects (must include renal and GIT)		

	Stem: A 30	year old man collapsed while hiking. Starting with Physiology.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Counter current mechanism Subject: Physiology LOA: 1	How does the Countercurrent mechanism enable the kidney to concentrate urine? Prompt: what processes produce this gradient and where do they occur Candidates may choose to use diagram for demonstartion	Concentrating mechanism depends on maintaining a gradient of increasing osmolality along medullary pyramids. Gradient is produced by Countercurrent multipliers in the LOH and maintained by Vasa recta acting as counter current exchangers. 1) Water moves out of the thin descending limb (via aquaporin 1), 2) Active transport of Na and Cl out of thick ascending limb of LOH 3) Continued inflow of isotonic fluid into the proximal tubule and out of desc tubule H2O moves out of collecting duct (into the hypertonic interstitium of the medullary pyramids) under the influence of ADH Vasa recta acts as countercurrent exchangers in the kidney in which NaCl & urea diffuse out of the ascending limb of the vessel & into the descending limb, while water diffuses out of the descending into the ascending limb of the vascular loop. As	Bold to pass. Need to demonstrate understanding.
Stem: Moving on	to Pharmacology. The patient is vomiti	a result, the solute remains in the medulla pyramid & maintain the interstitial concentration.	
Question 2 Antiemetics - Ondansetron Subject: Pharmacology	a) List anti-emetics with different mechanisms of action	 Serotonin 5HT3 antagonists (e.g. Ondansetron) Dopamine antagonist: Phenothiazines (Prochlorperazine) and Butyrophenones (droperidol). Metoclopramide(has peripheral effects) H1 antihistamines and anticholinergic (e.g. Hyoscine, Diphenhydramine) Corticosteroids (i.e dexamethasone) Benzodiazepines (i.e diazepam, lorazepam) Cannabinoids Neurokinin Receptor antagonist (e.g. Aprepitant) 	Minimum of 3
LOA: 1	b) How is the effect of ondansetron mediated?	b) Mostly peripheral 5HT3/Serotonin receptor blockade on extrinsic intestinal vagal and spinal afferent nerves. Some effect on Central 5HT3 receptor blockade in vomiting centre and chemoreceptor trigger zone. Anti-emetic action mostly restricted to emesis attributable to vagal stimulation (e.g. postop) and chemotherapy. Less effect for other emetic stimuli (e.g. motion sickness).	Bold to pass
	c) What are possible adverse effects of Ondansetron?	c) Headache, dizziness, constipation, diarrhoea Uncommon – small prolongation of QT.	Minimum of one

Stem: You suspec	t he has been bitten by a snake. Blood	tests are performed on this patient.	
Question 3 Subject: Clinical Building block	These are the blood test results for this patient. Please interpret and provide differential diagnoses.	See separate document of pathology results with Venom induced consumptive coagulopathy, rhabdomyolysis. DIC from other cause unlikely given clinical scenario	Recognise coagulopathy and differentials for this. Most likely envenomation.
Stem: His knee is	swollen. Moving on to Anatomy.	·	•
Question 4 Knee (x-ray) Subject: Anatomy	a) Identify the bony structure shown on this x-ray.	 a) Femur – condyles (medial and lateral), epicondyles (medial and lateral). Adductor tubercle Tibia – condyles (medial and lateral), tibial plateau, intercondylar eminence with intercondylar tubercles (medial and lateral) Fibular – head with apex, neck Patella 	All bold plus 6 others
LOA: 1	b) What factors stabilise the knee joint?	 b) Strength and actions of surrounding muscles and their tendons – most important quadriceps femoris, esp. vastus medialis and lateralis. Ligaments connecting femur and tibia – The main ones being the anterior and posterior Cruciates and medial (tibial) and lateral (fibular) collaterals Other ligaments are; posterior oblique and arcuate ligaments and the patella ligament (Most stable position = erect extended knee. Articular surfaces most congruent. Cruciates and collaterals taut and joint splinted by many tendons). 	Must identify muscle groups and all 4 main ligaments
	c) Describe the attachments of the cruciate ligaments.	c) ACL attaches anteriorly and runs up laterally, PCL opposite.ACL arise from anterior intercondylar tibial eminence, passes superiorly and posterolaterally to medial aspect of thelateral femoral condyle. PCL arise from posterior intercondylar area of tibia, passes superiorly and anteromedially to thelateral aspect of the medial femoral condyle	Must identify A/P tibial attachments.

Stem: Moving onto	Pathology. He represents one week later	with fever and a rash.	
Question 5 Type 3 hypersensitivity	a) What is the pathogenesis of Type III Hypersensitivity?	(Ig G or IgM) Antibodies bind antigens & then induce inflammation directly or by activating complement. The recruited leukocytes produce tissue damage by release of lysosomal enzymes and generation of toxic free radicals	Bold to pass
Subject : Pathology LOA: 1		 3 phases (systemic diseases) a) Formation of antigen antibody complexes (immune complexes) in circulation b) Deposition of immune complexes in various tissues c) inflammatory reaction at the site of deposition, causing tissue injury 	
	b) List some examples of diseases caused by Type III Hypersensitivity.	b) Serum sickness, SLE, polyarteritis nodosa, post strep GN, Acute GN, reactive arthritis, arthus reaction.	2 to pass
	c)What symptoms or signs may patients present with?	c) Arthritis, Skin lesions, Vasculitis, Nephritis, fever	2 to pass

ACEM PRIMARY VIVA B Thursday Afternoon

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Subject: CBB	Describe the ECG. Prompt: What is the most likely rhythm?	Regular broad/wide complex tachycardia rate :150 , looks regular concordance (no RS complex) no obvious Fusion and capture beats Dx: VT	Bold to pass
Stem: Moving on	to Physiology		
Question 2 Coronary blood flow	a) What is the coronary blood flow at rest?	250ml/min or 5% of the Cardiac Output.	Bold to pass. a) Accept range of 200- 300ml/min acceptable. 4-6%
Subject: Phys LOA: 1	 b) Describe coronary artery blood flow during the cardiac cycle. Prompt: Which part of the myocardium is most vulnerable to reduced coronary artery blood flow? 	Greater flow in diastole compared with systole. LV subendocardium most vulnerable. RV flow continuous	b) Both bold
	c) What chemical factors may cause coronary vasodilation?	Hypoxaemia, local increase in CO2, H+, K+, lactate, PG, adenosine and adenine nucleotides.	c) 2/4 bold
	d) What receptors govern coronary blood flow?	Coronary arterioles have alpha receptors – vasoconstriction , B receptors – vasodilation Cholinergic receptors - vasodilation.	d) 1/2 bold

Stem: Moving onto P	armacology. He is on frusemide		
Question 3 Frusemide	a) What class of drug is it?b) What are the pharmacokinetics of frusemide?	Loop diuretic Absorption: Well absorbed / variable oral bioavailability /10-100%.	Bold 3 of 6
Subject: Pharm		Onset post oral is 1-3 hour. Post IV is 15-30 mins.	
LOA: 1		Duration post oral is 2-6 hours. Post IV 2 hours. Distribution: highly albumin bound. Metabolism: Liver (small amount). Elimination: Renal.	
	c) What are the adverse effects?	orthostatic hypotension, dehydration Hyponatremia, hypokalemia, hypomagnesemia, metabolic alkalosis - ototoxicity, tinnitus, vertigo - GIT: pancreatitis, jaundice, N&V Raised uric acid- causing gout - thrombocytopenia - hypersensitivity reactions – rash	1 electrolyte abnormality and CVS effect (the other ones are quite rare)
	d) What are the possible drug interactions?	 NSAID, aminoglycosides anticoagulants digoxin, lithium, propranolol, probenecid, thiazides, amphotericin B, cisplatin 	1 to pass

Stem: A CT-aortogra	m is performed. Moving onto Pathology		
Question 4 Aortic dissection	a) Describe the pathogenesis of an aortic dissection.	Hypertension , aorta of hypertensive patients have medial hypertrophy of vasa vasorum and degenerative changes in the media	Bold
Subject: Path	Prompt; what are the risk factors for aortic dissection	Connective tissue disease (inherited or acquired) Both of the above cause weakness in the media	
LOA: 1		An aortic dissection starts with an intimal tear and the blood dissect in the media either distally or proximally leading to a tear in the media	
	b) How are aortic dissections classified?	By site of involvement: Stanford Type A prox, Type B distal OR Debakey I – asc and desc; II asc only, III desc only	Either classification to pass.
	c) What are the potential consequences of aortic dissection? Give examples	 Rupture back into intima or through adventitia Rupture out or into pericardial, pleural or peritoneal cavities Cardiac tamponade, aortic insufficiency, MI, distal ischaemia, spinal cord ischaemia Death 	3 examples to pass.

Stem: Moving onto A	Anatomy. A CT scan is performed		
Question 5 Aorta Subject: Anat	a) Describe the structures on this CT (Axial image from Anatomy prop inventory)	Liver, portal vessels, R kidney (top), aorta, L kidney , spleen, splenic vein, bowel loops, pancreas , IVC, vertebra, ribs, paravertebral muscles, intercostal and abdominal muscles, fat, skin	5 Bold + 2 others
LOA: 1	b) Describe the course of the thoracic aorta? Name anatomical relations.	Ascending aorta: begins at aortic orifice. Arch of the aorta: begins behind 2 nd sternocostal jt. Passes supero-posteriorly and to the left anterior to the right pulm art and the carina. The apex of the arch lies to the left of the trachea/oesophagus and descends posterior to the left lung root, ending back at the level of the T4 (2 nd sternocostal joint.) Descending aorta: Origin is at the left side at level of the T4 vertebra. It courses inferiorly to the level of T12. It approaches the midline as it descends alongside the oesophagus. At the inf border T12 it exits through the aortic hiatus and becomes the abdominal aorta	Bold

AGREED MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Shingles rash	a) Describe this rash? What is the likely diagnosis?	Herpes zoster (vesicular lesions, crusting, not crossing midline, involving eyelid)	Bold to pass
Subject: CBB Picture	b) What complications may occur?	Ocular involvement (Herpes ophthalmicus) Secondary bacterial infection / cellulitis Ramsay Hunt syndrome Disseminated herpes zoster (immunocompromised pt) Post herpetic neuralgia	2/5 to pass
Stem: Moving onto Ph	armacology. The patient is on carbamazepine.		
Question 2 Carbamazepine	a) What receptors do carbamazepine affect?	a) Sodium channel blocker, adenosine receptors Anti-cholinergic (anti-muscarinic)	Bold to pass
Subject: Pharm			
LOA 1	b) What are the most common dose-related adverse effects?	 nystagmus, diplopia, ataxia (cerebellar) drowsiness anti-cholinergic effects - dry mouth, tachycardia, blurred vision, delirium CVS- hypotension 	1 cerebellar sign plus one other
	c) What important drug interactions does carbamazepine have?	c) - Induces CYP450/induces hepatic drug metabolizing enzymes and P-glycoprotein, results in increased clearance of some drugs, reducing their therapeutic blood levels (e.g. warfarin, phenytoin, valproate, lamotrigine, diazepam, phenobarbitone) - Can result in breakthrough seizures - Increases metabolism of OCP reducing its effectiveness	Bold plus one example

Stem: Moving onto P	hysiology. He is tachycardic and has a dry mouth	۱.	
Question 3 Cholinergic neurotransmission Subject: Phys	hysiology. He is tachycardic and has a dry mouth a) Please describe the synthesis, release and action of acetylcholine at a nerve synapse. You may draw a diagram	Axon terminal Acetyl CoA CoA CoA CoA CoA CoA CoA CoA	Key sequence to passSynthesis: acetyl CoA and choline-Release from the synaptic vesicle-Bind to post-synaptic
LOA 1		Choline is transported back into the axon terminal and is used to make more ACh. Cholinergic Acetylcholinesterase (AChE) Corpose 2017 Palmon For Acetylohoma is (Journa Stransported Cell Corpose 2017 Palmon For Acetylohoma is (Journa Stransported Cell Cell Corpose 2017 Palmon For Acetylohoma is (Journa Stransported Cell Cell Cell Cell Cell Cell Cell Ce	receptor
	b) Once acetylcholine is released into the synaptic cleft, how is its effect terminated?	Diffusion Acetylcholine esterase Re-uptake of choline into presynaptic nerve terminal	Bold to pass.
Stem: Moving onto Pa	athology.		•
Question 4 Herpes Zoster	Describe the pathogenesis of Herpes Zoster.	 the patient has had previous exposure to herpes (chickenpox or subclinical) VZV evades immune defenses & infects sensory 	Bold to pass
Subject: Path		neurons in and around dorsal root ganglia 3 Able to remain latent here for many years	
LOA 2		 4 Usually a single episode of recurrence in the form of zoster/ shingles 5 Reactivation often in the elderly or immuno-compromised 6 Vesicular eruption along dermatome of one or more sensory nerves Associated intense burning, itching and pain due to radiculoneuritis. May cause nerve dysfunction (e.g. Ramsay Hunt syndrome) 	

Model Extraocular muscles (F13)this model.Superior nectus Inferior nectus Lateral rectus Lateral rectus Lateral rectus Inferior obliqueSubject: AnatLOA 1b)Describe their actionsb) Recti • Superior (elevation, adduction, medial rotation) • Inferior (depression, adduction, lateral rotation) • Inferior (depression, adduction, lateral rotation) • Inferior (elevation, adduction) • Inferior (elevation, adduction) • Inferior (elevation, adduction) • Inferior (depression, adduction) • Inferior (elevation, adduction)Z/3 to passc) What nerves supply these muscles? • C) Oculomotor (CN III) Nerve to all, except: Adducers (CN IV) Nerve to Superior Oblique • Depression (Inferior Rectus) • Elevation (Inferior Rectus) • Depression (Inferior Rectus) • Depression (Inferior Oblique) • Depression (Superior Oblique)Adduction isolates recti and adduction isolates sobliques to pass	Question 5	a) Identify the extraocular eye muscles on		All to pass.
(F13) Medial rectus Lateral rectus Superior oblique Inferior oblique Superior oblique LOA 1 b)Describe their actions b) Recti Superior (elevation, adduction, medial rotation) S muscles described to pass. LOA 1 b)Describe their actions b) Recti Superior (elevation, adduction, medial rotation) S muscles described to pass. LOA 1 b)Describe their actions b) Recti S superior (elevation, adduction, medial rotation) S muscles described to pass. LOA 1 b)Describe their actions b) Recti S superior (elevation, adduction, lateral rotation) S muscles described to pass. Loc 1 S muscles described to pass. S muscles described to pass. S muscles described to pass. (D) What nerves supply these muscles? S operior (depression, adduction) Inferior (elevation, abduction) Z/3 to pass d) How are the actions of these muscles tested clinically? BONUS QUESTION d) Abduction (Lateral Rectus) S Depression (Inferior Rectus) Adduction S Depression (Inferior Rectus) Adduction Abduction isolates recti and adduction isolates obliques to pass	Model	this model.	Superior rectus	
Subject: Anat Lateral rectus Superior oblique Inferior oblique LOA 1 b)Describe their actions b) Recti Superior (elevation, adduction, medial rotation) 5 muscles described to pass. LOA 1 b)Describe their actions b) Recti Superior (elevation, adduction, medial rotation) 5 muscles described to pass. Local b)Describe their actions b) Recti Superior (elevation, adduction, medial rotation) 5 muscles described to pass. Lateral (abduction) Inferior (depression, adduction, lateral rotation) Medial (adduction) 10 Lateral (abduction) Lateral (abduction) Inferior (elevation, abduction) 10 Obliques Superior (depression, abduction) Inferior (elevation, abduction) 2/3 to pass C) What nerves supply these muscles? C) Occulomotor (CN II) Nerve to Superior Oblique 2/3 to pass d) How are the actions of these muscles to Abduction (Lateral Rectus) Abduction isolates recti and adduction isolates recti and adduction isolates obliques to pass. • Elevation (Inferior Oblique) • Elevation (Inferior Rectus) Pass	Extraocular muscles		Inferior rectus	
Subject: Anat LOA 1Superior oblique Inferior obliqueSuperior oblique Inferior obliqueSuperior oblique Inferior obliqueSuperior (elevation, adduction, medial rotation) • Inferior (depression, adduction, lateral rotation)S muscles described to pass.LOA 1b) Describe their actionsb) Recti • Superior (elevation, adduction, medial rotation) • Inferior (depression, adduction, lateral rotation) • Lateral (adduction) • Superior (depression, abduction) • Inferior (elevation, abduction) • Inferior (elevation, abduction)S muscles described to pass.c) What nerves supply these muscles?c) Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Lateral Rectus Trochea (CN VI) Nerve to Superior Oblique2/3 to passd) How are the actions of these muscles?d) Abduction (Lateral Rectus) • Depression (Inferior Rectus) • Depression (Inferior Rectus) • Depression (Inferior Rectus) • Depression (Inferior Rectus) • Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass	(F13)		Medial rectus	
LOA 1Inferior obliqueInferior obliqueb) Describe their actionsb) RectiSuperior (elevation, adduction, medial rotation)S muscles described to pass.b) RectiSuperior (depression, adduction, lateral rotation)Inferior (depression, adduction, lateral rotation)S muscles described to pass.c) What nerves supply these muscles?c) Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Superior Oblique2/3 to passd) How are the actions of these muscles tested clinically? BONUS QUESTIONc) Abduction (Lateral Rectus) • Elevation (Inferior Rectus) Adduction • Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass			Lateral rectus	
LOA 1b)Describe their actionsb) Recti · Superior (elevation, adduction, medial rotation) · Inferior (depression, adduction, lateral rotation) · Medial (adduction) · Lateral (abduction) · Inferior (elevation, abduction) · Inferior (depression, abduction) · Inferior (elevation, abduction)5 muscles described to pass.c) What nerves supply these muscles?c) Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Superior Oblique2/3 to passd) How are the actions of these muscles tested clinically? BONUS QUESTIONd) Abduction (Lateral Rectus) · Elevation (Inferior Rectus) · Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass	Subject: Anat		Superior oblique	
b)Describe their actionsb) Recti5 muscles described to pass.· Superior (elevation, adduction, medial rotation)· Inferior (depression, adduction, lateral rotation)5 muscles described to pass.· Inferior (depression, adduction)· Inferior (depression, adduction)• Medial (adduction)• Lateral (abduction)· Lateral (abduction)· Lateral (abduction)• Superior (depression, abduction)• Inferior (elevation, abduction)· Obliques · Superior (depression, abduction)• Inferior (elevation, abduction)2/3 to pass· Obliques · Superior (depression (CN VI) Nerve to all, except: Abducens (CN VI) Nerve to Superior Oblique2/3 to passd) How are the actions of these muscles tested clinically? BONUS QUESTIONd) Abduction (Lateral Rectus) • Elevation (Inferior Rectus) Adduction • Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass			Inferior oblique	
 Superior (elevation, adduction, medial rotation) Inferior (depression, adduction, lateral rotation) Inferior (depression, adduction, lateral rotation) Medial (adduction) Lateral (abduction) Obliques Superior (depression, abduction) Inferior (elevation, abduction) Inferior (elevation (Lateral Rectus) Elevation (Superior rectus) Depression (Inferior Rectus) Adduction Elevation (Inferior Oblique) 	LOA 1			
rotation)Inferior (depression, adduction, lateral rotation)Medial (adduction)Medial (adduction)Lateral (abduction)Lateral (abduction)ObliquesSuperior (depression, abduction)Inferior (elevation, abduction)Inferior (elevation, abduction)Inferior (elevation, abduction)Inferior (elevation, abduction)Inferior (levation, abduction)Inferior (clevation, abduction)Inferior (levation, abduction)Inferior (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Lateral Rectus Trochlea (CN IV) Nerve to Superior Obliqued) How are the actions of these muscles tested clinically? BONUS QUESTIONd) Abduction (Lateral Rectus) • Elevation (Superior rectus) • Depression (Inferior Rectus) Adduction • Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass		b)Describe their actions	b) Recti	5 muscles described to pass.
rotation)Medial (adduction)• Medial (adduction)Lateral (abduction)• Lateral (abduction)Obliques• Superior (depression, abduction)• Inferior (elevation, abduction)• Inferior (elevation, abduction)• Inferior (elevation, abduction)• O' Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Lateral Rectus Trochlea (CN IV) Nerve to Superior Oblique2/3 to passd) How are the actions of these muscles tested clinically? BONUS QUESTIONd) Abduction (Lateral Rectus) • Elevation (Superior rectus) • Depression (Inferior Rectus) • Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass				
 Medial (adduction) Lateral (abduction) Obliques Superior (depression, abduction) Inferior (elevation, abduction) Inferior (elevation, abduction) C) What nerves supply these muscles? C) Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to lateral Rectus Trochlea (CN IV) Nerve to Superior Oblique d) How are the actions of these muscles tested clinically? BONUS QUESTION Elevation (Superior rectus) Depression (Inferior Oblique) 				
 Lateral (abduction) Obliques Superior (depression, abduction) Inferior (elevation, abduction) Inferior (elevation, abduction) Inferior (CN III) Nerve to all, except: Abducens (CN VI) Nerve to all, except: Abducens (CN VI) Nerve to Lateral Rectus Trochlea (CN IV) Nerve to Superior Oblique d) How are the actions of these muscles tested clinically? BONUS QUESTION elevation (Lateral Rectus) Elevation (Superior rectus) Depression (Inferior Rectus) Adduction Elevation (Inferior Oblique) 				
Obliques • Superior (depression, abduction) • Inferior (elevation, abduction)2/3 to passc) What nerves supply these muscles?c) Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Lateral Rectus Trochlea (CN IV) Nerve to Superior Oblique2/3 to passd) How are the actions of these muscles tested clinically? BONUS QUESTIONd) Abduction (Lateral Rectus) • Elevation (Superior rectus) • Depression (Inferior Rectus) • Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass				
 Superior (depression, abduction) Inferior (elevation, abduction) Inferior (elevation, abduction) (c) What nerves supply these muscles? (c) Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to lateral Rectus Trochlea (CN IV) Nerve to Superior Oblique d) How are the actions of these muscles tested clinically? BONUS QUESTION (d) Abduction (Lateral Rectus) Elevation (Superior rectus) Depression (Inferior Rectus) Adduction Elevation (Inferior Oblique) 				
 Inferior (elevation, abduction) () What nerves supply these muscles? () Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Lateral Rectus Trochlea (CN IV) Nerve to Superior Oblique () Abduction (Lateral Rectus) Elevation (Superior rectus) Depression (Inferior Rectus) Elevation (Inferior Oblique) 				
c) What nerves supply these muscles?c) Oculomotor (CN III) Nerve to all, except: Abducens (CN VI) Nerve to Lateral Rectus Trochlea (CN IV) Nerve to Superior Oblique2/3 to passd) How are the actions of these muscles tested clinically? BONUS QUESTIONd) Abduction (Lateral Rectus) • Elevation (Superior rectus) • Depression (Inferior Rectus) • Elevation (Inferior Oblique)Abduction isolates recti and adduction isolates obliques to pass				
 d) How are the actions of these muscles tested clinically? BONUS QUESTION d) Abduction (Lateral Rectus) Elevation (Superior rectus) Depression (Inferior Rectus) Elevation (Inferior Oblique) 				
d) How are the actions of these muscles tested clinically? BONUS QUESTIONTrochlea (CN IV) Nerve to Superior ObliqueAbduction isolates recti and adduction isolates obliques to passd) Abduction (Lateral Rectus) • Elevation (Superior rectus) • Depression (Inferior Rectus) • Elevation (Inferior Oblique)Abduction isolates obliques to pass		c) What nerves supply these muscles?	c) Oculomotor (CN III) Nerve to all, except:	2/3 to pass
d) How are the actions of these muscles tested clinically? BONUS QUESTION d) Abduction (Lateral Rectus) Elevation (Superior rectus) Depression (Inferior Rectus) Adduction Elevation (Inferior Oblique)			Abducens (CN VI) Nerve to Lateral Rectus	
tested clinically? BONUS QUESTION • Elevation (Superior rectus) • Depression (Inferior Rectus) • Adduction • Elevation (Inferior Oblique) • Elevation (Inferior Oblique) adduction isolates obliques to pass			Trochlea (CN IV) Nerve to Superior Oblique	
tested clinically? BONUS QUESTION• Elevation (Superior rectus) • Depression (Inferior Rectus) • Adduction • Elevation (Inferior Oblique)adduction isolates obliques to 		d) How are the actions of these muscles	d) Abduction (Lateral Rectus)	Abduction isolates recti and
Depression (Inferior Rectus) Adduction Elevation (Inferior Oblique)		tested clinically? BONUS QUESTION		adduction isolates obliques to
Adduction • Elevation (Inferior Oblique)				pass
Elevation (Inferior Oblique)				

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES	
Question 1	a) Describe this image.	a) Hypodensity in left parieto-occipital region	BOLD to Pass	
Subject: CBB	b) What is the clinical diagnosis	b) L. MCA territory infarct/stroke	Concept to pass	
CT brain Image LOA: 1	c) What signs may be found on examination?	 c) MCA stroke signs: contralateral hemiparesis contralateral hemisensory loss contralateral homonymous hemianopia aphasia, if the dominant hemisphere is involved contralateral neglect, if the non-dominant hemisphere is involved affects the face and arm more severely than the leg 	3/6 to pass	

Stem: Moving on to	Stem: Moving on to Anatomy, we will discuss the blood supply to the brain.				
Question 2 Subject: Anatomy CT brain Image (use CBB) LOA: 1	Question: a) What are the main arteries contributing to the blood supply of the brain?	 a) Vertebral arteries merging to form the basilar artery Internal carotid arteries Anastomosing via the anterior and posterior communicating arteries To form the Circle of Willis 	BOLD to pass Candidates may elect to draw and label the circle of Willis (McMinn p.67)		
	 b) What are the main cerebral arteries? c) Describe which lobes of the brain they supply. BONUS QUESTION IF TIME PERMITS d) (Which vessels make up the posterior circulation?) 	 b+c) Some overlap in lobar supply: Anterior cerebral: frontal, parietal lobes Middle cerebral: frontal, lateral temporal, parietal lobes Posterior cerebral: medial temporal, parietal, occipital lobes d) Posterior cerebral Superior cerebellar (Anterior and posterior) inferior cerebellar Pontine) 			

Question 3				
Brain Metabolism and Energy Sources Subject: Physiology	1.	How is brain perfusion maintained in brain injury?	 Aim is to maintain CPP With high ICP need to increase MAP to maintain CPP CPP = MAP - ICP Raised MAP results in systemic hypertension and reflex bradycardia with Vagal stimulation 	BOLD or explanation of equation to pass
LOA: 1 Ganong 25 th Edition pp 609-610	2.	What proportion of the total body Oxygen does the brain consume?	20% (despite brain weight 2% of body weight)	10-30%
	3.	What energy substrates can be used by the brain?	Glucose, glutamate in prolonged starvation amino acids,	Glucose to pass

Question 4	(a) What are the causes of ischaemic	(a)Arterial thrombosis	Thrombus + one
	cerebral infarction?	- Cerebral emboli	
Cerebral infarction		- lacunar infarcts from small vessels	
		- cerebral arteritis	
Subject: Pathology		- arterial dissection	
		- venous infarction	
LOA: 1			
	(b) Where are some sources of	(b)left atrium/ventricle thrombus	At least 2 sources
	cerebral thromboemboli?	- valvular vegetations	
		- PFO causing paradoxical emboli	
		Carotid plaque is treated with antibiotics, one of which is metroni Absorption - Well absorbed orally;	
Stem: Moving on to	Pharmacology. The patient has aspirated. H		dazole.
Stem: Moving on to Question 5	(a)Describe the pharmacokinetics of	le is treated with antibiotics, one of which is metroni Absorption - Well absorbed orally;	3 pharmacokinetic parameters
		Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability);	3 pharmacokinetic parameters (Absorption / Metabolism /
Question 5	(a)Describe the pharmacokinetics of	le is treated with antibiotics, one of which is metroni Absorption - Well absorbed orally;	3 pharmacokinetic parameters
Question 5 Metronidazole	(a)Describe the pharmacokinetics of	Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability); Metabolised in liver (can accumulate in hepatic	3 pharmacokinetic parameters (Absorption / Metabolism / Excretion /protein binding/half
Question 5 Metronidazole	(a)Describe the pharmacokinetics of	Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability); Metabolised in liver (can accumulate in hepatic insufficiency)	3 pharmacokinetic parameters (Absorption / Metabolism / Excretion /protein binding/half
Question 5 Metronidazole Subject: Pharm	(a)Describe the pharmacokinetics of	Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability); Metabolised in liver (can accumulate in hepatic insufficiency) Excreted via kidney;	3 pharmacokinetic parameters (Absorption / Metabolism / Excretion /protein binding/half
Question 5 Metronidazole Subject: Pharm	(a)Describe the pharmacokinetics of Metronidazole.	Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability); Metabolised in liver (can accumulate in hepatic insufficiency) Excreted via kidney; Low protein binding (10-20%); Half-life 7.5 hours	3 pharmacokinetic parameters (Absorption / Metabolism / Excretion /protein binding/half
Question 5 Metronidazole Subject: Pharm	(a)Describe the pharmacokinetics of Metronidazole. (b)What are the adverse effects of	 Ie is treated with antibiotics, one of which is metroni Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability); Metabolised in liver (can accumulate in hepatic insufficiency) Excreted via kidney; Low protein binding (10-20%); Half-life 7.5 hours - GIT: Nausea, diarrhoea, dry mouth, metallic taste 	3 pharmacokinetic parameters (Absorption / Metabolism / Excretion /protein binding/half life)
Question 5 Metronidazole Subject: Pharm	(a)Describe the pharmacokinetics of Metronidazole.	 Ie is treated with antibiotics, one of which is metroni Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability); Metabolised in liver (can accumulate in hepatic insufficiency) Excreted via kidney; Low protein binding (10-20%); Half-life 7.5 hours GIT: Nausea, diarrhoea, dry mouth, metallic taste Neuro: Headache, paraesthesia, dizziness 	3 pharmacokinetic parameters (Absorption / Metabolism / Excretion /protein binding/half
Question 5	(a)Describe the pharmacokinetics of Metronidazole. (b)What are the adverse effects of	 Ie is treated with antibiotics, one of which is metroni Absorption - Well absorbed orally; Oral/IV/suppository (99% oral bio-availability); Metabolised in liver (can accumulate in hepatic insufficiency) Excreted via kidney; Low protein binding (10-20%); Half-life 7.5 hours - GIT: Nausea, diarrhoea, dry mouth, metallic taste 	3 pharmacokinetic parameters (Absorption / Metabolism / Excretion /protein binding/half life)

ACEM PRIMARY VIVA B Thursday Afternoon

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE	NOTES
Question 1 Subject: CBB	(a) Please describe his x-ray	a) Right middle lobe opacities /midzone/loss of right heart border	Appropriate description
LOA:	(b) What is your differential diagnosis?	b) consistent with pneumonia, PE, malignancy, TB	Include pneumonia to pass
Stem: We will start	with Pathology.		
Question 2	a) What are the most common causes	a) The most common bacterial causes are:	Strep plus 2 others
Robbins – 9 th Edition. Page 704-6 Subject: Path LOA: 1	of bacterial community acquired pneumonia?	 Strep pneumoniae mycoplasma pneumoniae Haemophilus influenzae Moraxella catarrhalis Staph aureus Klebsiella pneumoniae Pseudomonas aeruginosa Legionella pneumoniae 	
	b) What factors predispose patients to the development of acute bacterial pneumonia?	 b) 1. Extremes of age. 2. Underlying chronic disease such as COPD, Diabetes mellitus, Congestive cardiac failure, 3. Immunodeficiency: congenital or acquired, Abnormal splenic function: decreased splenic function or asplenia. 	3 examples from 2 groups to pass

azithromycin 2. What is its mechanism of action?	2. Inhibits protein synthesis by binding to the	Bold to pass
2. What is its mechanism of action?	2. Inhibits protein synthesis by binding to the	
	ribosomal RNA. It is bactericidal at high concentrations.	Bold to pass
3. What organisms does azithromycin cover?	 3. Haemophilus influenza Chlamydia species. Mycobacterium avium complex Staph Strep Mycoplasma Legionella 	3 to pass
4. What is an important cardiac side effect?	4. Prolonged QT interval.	Bonus question
4	cover? 4. What is an important cardiac side	A. What is an important cardiac side

uestion 4	1 Explain Fick's law of diffusion.	1. Gases diffuse across a surface by passive	1. Concept explained to pass.
ubject:	<i>Prompt</i> :Fick's law of diffusion describes	diffusion. Fick's law says that the rate of diffusion	Or adequately explains the
hysiology	the factors influencing the diffusion of	is directly proportional to the area of the diffusion	formula – if written
/est's Respiratory	gases across the alveolar wall	membrane, the pressure gradient across the	
hysiology 10 th		membrane and the diffusion constant. It is	
dition. P 29		inversely proportional to the thickness of the	
DA:		membrane.	
			Dependent on the substances
			making up the membrane AN
	Prompt for diffusion constant: What		proportional to the solubility
	factors determine the diffusion constant	$P_2 \qquad \qquad$	of the gas across the
	in Fick's law?	Area Doc NWW	membrane - inversely
		P1	proportional to the square
		Thickness	root of the molecular weight
			of the gas.
	2. What is the difference between a	2. A partician limited ass is one where the partial	2. Concept explained to pass.
	diffusion limited and a perfusion limited	2. <u>A perfusion limited gas</u> is one where the partial pressure on both sides of the membrane	
	gas?	equilibrates rapidly such that no further diffusion	_ <u>ال</u> _
		into the blood can occur from the alveoli unless	Start of End of capillary
	Prompt – you may draw a graph to	the blood perfusion rate increases. In the graph (Alveolar
	illustrate your answer	see picture), there is no gap between the alveolar	N ₂ O O ₂ (Normal)
		pp of the gas at the time blood leaves the	0 ₂ (Abnormal)
		pulmonary capillary.	Partiol press
		A diffusion limited gas is one where the partial	Parti
		pressure of the gas does not achieve equilibration	со
		in the time that blood spends in the pulmonary	0 .25 50 .75
		capillaries. In the graph, there is a gap between	Time in capitary (sec)
		the pp of the gas at the end of the pulmonary	
		capillary perfusion time.	

Question 5	a) Using the CXR (CBB), name and	a) Right and left upper lobe fill apices/upper	bold location concepts
	indicate the position of the lobes	zones	
Subject: Anatomy	of the lung	Lingular lobe abuts the left heart border.	
	5	Left lower lobe abuts the left	
Moore's anatomy.		hemidiaphragm.	
7 ^h Edition. Pages		Right lower lobe abuts the right	
109-110		hemidiaphragm.	
		Right middle lobe abuts the right heart	
LOA: 1		border.	
	 b) Describe the surface anatomy of the parietal pleural reflections 	 b) The right and left sternal parietal pleural reflections are asymmetrical but the costal and diaphragmatic reflections are symmetrical. 	4 of 7 bold concepts
		 The right and left sternal pleural reflection start at the apices of the right and left lung They descend inferomedially in parallel to the sternoclavicular joint and pass to the posterior aspect of the sternum in the anterior median line. At the level of the 2-4 costal cartilage, they lie parallel to each other. Inferior to this level, they become asymmetrical. On the left side, at the level of the 4th costal cartilage, the pleura deviates to the left side of the sternum and reaches the 6th costal cartilage level just lateral to the left lateral sternal edge. The right side passes inferiorly until it reaches the 6th costal cartilage in the anterior median line. From then on, both sides passes laterally and posteriorly with the following markers: At the level of the 8th costal cartilage and the 	

At the level of the 10th costal cartilage at the mid axillary line. At the level of the 12th costal cartilage at the neck of the 12th rib.	
The diaphragmatic pleural reflection is in close contact to the diaphragm.	

ACEM PRIMARY VIVA B

Friday AM

Candidate Number:

ΤΟΡΙϹ	QUESTIONS	KNOWLEDGE	NOTES
Question 1 Dead space Subject:	(a) What is the anatomical dead space?	 a) The anatomical dead space refers to the airway volume with ventilation and no blood flow. The conducting airways (to division 16) take no part in gas exchange. Vol = approx. 150mls. 	Bold to pass
Physiology West's Respiratory Physiology 10 th edition pages 19 - 21	(b) How does it differ from physiological dead space? Prompt: What happens in normal vs diseased patients?	b) Anatomical dead space is determined by morphology of the airways and lung. Physiological dead space is the volume of airways and lung that does not eliminate CO2. The two dead spaces of volume are almost the same in normal subjects , but the physiological dead space is increased in many lung disease s due to inequality of blood flow and ventilation in the lung. (VQ mismatch)	Bold to pass
	Bonus Q: How are these different dead spaces measured?	Measurement: Fowler's = Anatomic Dead Space Bohr = Physiological Dead Space <i>(bonus)</i>	

Stem: He is	tem: He is drowsy and has low oxygen saturations on room air. You perform an arterial blood gas.					
Question 2 ABG Subject: CBB	a)	Describe and interpret this ABG Prompt "move along" if trying to calculate A-a gradient	a)	Acidaemic, hypoxic, hypercarbic (respiratory acidosis), Acute Respiratory acidosis with no metabolic compensation, type 2 Respiratory Failure	Bold to pass	
	b)	What are possible causes of these abnormalities in this patient?	b) •	Respiratory acidosis CNS depression from drugs, injury, or disease. Hypoventilation due to pulmonary disease (cancer, effusion, pneumonia, atelectasis) Hypoventilation due to musculoskeletal or neuromuscular (paraneoplastic?) disease	1 cause	

Stem: Movi	ng on to Pharmacology. He is given intravenous antibiotics and has an	allergic reaction requiring adrenaline.
Question 3 Adrenaline Subject: Pharm LOA: 1 Katzung 13 th edition page 140- 144	a) Describe the pharmacokinetics of adrenaline?	a) <u>Absorption / Routes of</u> <u>administration:</u> Subcut, IMI , IV and nebulised, oral = poor. <u>Distribution:</u> Crosses placenta, does not cross BBB. 50% protein bound. Onset: seconds. Duration: approx. 2 min. <u>Metabolism</u> : terminated by metabolism in sympathetic nerve terminals and metabolised by COMT and MAO , circulating adrenaline metabolised by COMT. Metabolites = VMA/MOPEG <u>Excretion:</u> metabolites via urine.
	b) What are the pharmacodynamic effects of adrenaline?	 b) Equal effect at both Alpha and Beta receptors (low dose mainly Beta, higher doses increased Alpha) Alpha = vasoconstriction B1 = positive inotropy and chronotropy B2 = smooth muscle relaxation → bronchodilation and skeletal muscle vasodilatation (this may cause fall in TPR reflected in fall in diastolic BP sometimes seen)

Stem: Movi	Stem: Moving on to Pathology. He has multiple metastases from his lung cancer				
Question 4	a) What factors predispose to lung carcinoma?	a) Tobacco smoking Environmental exposures: radiation,	Tobacco smoke + 2 concept areas to		
Lung		asbestos, air pollution (particulates),	pass		
Cancer		occupational inhaled substances			
		(Nickel, Chromates, Arsenic)			
Subject:		Genetic mechanisms: dominant			
Pathology		oncogenes (c-MYC, k-RAS) & loss of tumour suppressor genes (e.g. p53, RB)			
		Precursor lesions: squamous dysplasia,			
LOA: 1		carcinoma in situ, atypical adenomatous			
		hyperplasia			
Robbins 9 th					
edition	b) What are the classic clinical features of lung carcinoma	b) Cough (75%), weight loss (40%),	3 of 4		
Pg. 712-		chest pain (40%), dyspnoea (20%).			
719					
	c) What paraneoplastic syndromes are associated with lung carcinoma?	 c) SIADH - hyponatraemia; ACTH - Cushings syndrome; hypercalcaemia - 	At least 3		
		parathormone, parathyroid hormone-			
	Prompt: what hormones can be released by tumours?	related peptide or prostaglandin E;			
		hypocalcaemia - calcitonin;			
		gynaecomastia - gonadotropins;			
		carcinoid syndrome -serotonin,			
		bradykinin .			
		Others: Lambert-Eaton Myaesthenic sy,			
		peripheral neuropathy, acanthosis			
		nigricans, clubbing (hypertrophic pulm. osteoarthropathy).			

Stem: Movi	ng on to Anatomy. He has pain from bony metastases in his shoulder.		
Question 5 Rotator Cuff MODEL ; Articulated Shoulder joint	a) Identify the major bony features of the scapula using this model.	a) • Subscapular fossa • Glenoid cavity • coracoid process, • acromion • facet for clavicle • Supraspinous fossa • Suprascapular notch • Spine of scapula • Infraspinous fossa	Bold to pass
Subject: Anatomy LOA: 1		 neck of scapula Deltoid tubercle of spine 	
Pg. 700- 705 Moore's Anatomy 7 th Edition	b) Demonstrate the proximal attachments of the four rotator cuff muscles on the scapula	b) Supraspinatus – supraspinous fossa Infraspinatus – infraspinous fossa Teres minor – middle part lateral border of scapula Subscapularis – subscapular fossa	Must know all four
	c) What are the actions of these individual rotator cuff muscles?	 c) Supraspinatus – abduction Infraspinatus – lateral rotation Teres minor – lateral rotation Subscapularis – medially rotates arm 	3 of 4 minimum

Stem: A 90 year-old	Stem: A 90 year-old man with a urinary catheter presents with sepsis. Previous cultures have grown E.coli. We will start with Pathology.				
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES		
Question 1 E.coli	a) Which bacterial class does Escherichia coli belong to?	 a) E.coli is a gram negative rod which is a facultative anaerobe. It is a normal GI pathogen. 	Bold		
Subject: Pathology LOA: 1 Robins 9th Ed; Pg 350; Pg 665; Chapter 14:	b) What is the difference between an endotoxin and an exotoxin?	 b) Endotoxins are lipopolysaccharides (LPS) in the outer membrane of the cell wall of Gramnegative bacteria which cause injury via the host immune response Exotoxins are proteins that are secreted by the bacterium and cause direct injury 	Bold concepts		
	c) List some types of infections that can be commonly caused by E.coli?	c) Urinary tract infections; prostatitis; epididymo- orchitis; infectious enterocolitis; cholecystitis; bacterial peritonitis	3 to pass from this list		

Question 2	 a) What is the definition of the glomerular filtration rate? 	a)	Amount of fluid (plasma filtrate) filtered by the glomerulus per unit time	Concept to pass
GFR	b) What is the normal	b)	Normal GFR – 125ml/min (180L/24Hrs) in	+/- 10% to pass
Subject: Physiology	Glomerular filtration rate?		normal adult. 10% lower in females.	110-140ml/min
LOA: 1 Ganong's review of Medical Physiology. 25 th edition. Chapter 37 Renal function and micturition. Glomerular filtration.	 c) List some factors that affect the GFR. Prompt " physiological factors" "are there any particular cells in the kidney that are involved in regulating GFR?" 	c)	 -Size of capillary bed. Regulated by mesangial cells (contractile cells) located in the glomerulus (between the basal lamina and the endothelium). -Permeability of glomerular capillaries (50 x skeletal muscle capillaries) -Hydrostatic and osmotic pressure gradients Oncotic pressure (plasma protein concentration) Glomerular capillary hydrostatic pressure -Systemic blood pressure -Afferent arterial pressure (renal artery blood flow - kept stable by autoregulation 90- 210mmHg) -Afferent or efferent arteriolar constriction -Hydrostatic pressure in Bowman's capsule -Intrarenal interstitial pressure (ureteral obstruction, renal oedema) -Age 	Bold to pass. Must mention mesangial cells and 3 other factors.
	d) What substances act on mesangial cells to change GFR?	d)	Increased – ANP, dopamine, PGE2, cAMP Decreased – NA, vasopressin, AGII, Histamine, PGF2, endothelins, TXA2, leukotrienes	List at least one of each increased/decreased

Stem: Moving onto F	narmacology.	His medications inclu	ude R	amipril.	
Question 3 ACE inhibitors Subject: Pharmacology LOA: 2 Katzung 13 ["] , 184-5.	Ramipril. Prompt: h of drug wo Prompt: d	dynamics of ow does this class ork? o they have other ypertensive benefit	a)	Inhibit the peptidyl dipeptidase (angiotensin converting) enzyme that hydrolyzes angiotensin I to angiotensin II Stops inactivation of bradykinin , a potent vasodilator, which works at least in part by stimulating release of nitric oxide and prostacyclin. Inhibits the renin-angiotensin system and and stimulates the kallikrein-kinin system. Diminishes proteinuria and stabilizes renal function (even in the absence of lowering of blood pressure) - particularly valuable in diabetes - now recommended in diabetes even in the absence of hypertension.	Bold to pass
	•	mipril eliminated? s important?	b)	It is eliminated primarily by the kidneys. Doses of these drugs should be reduced in patients with renal insufficiency.	Bold to pass
	,	some adverse and t of ACE Inhibitors?	c)	Severe hypotension can occur after initial doses (esp. fluid deplete pts). ARF – esp. with bilateral renal artery stenosis or solitary kidney. Dry cough and wheeze. Hyperkalemia – esp. with K· sparing diuretics, DM and CRF. Angioedema Contraindicated in pregnancy. In high doses with CRF - neutropenia and proteinuria Altered taste Allergic skin reactions Drug fever (in up to 10% of pts) Effect may be reduced with concomitant NSAIDs	2 bold/total 4 to pass

Question 4	a) Describe this x-ray. What is the abnormality?	 a) Thoracic spine (AP and lateral) T12 crush fracture (> 50% loss of vertebral 	Bold
Lateral T-spine		height)	
X-ray	b) Name possible causes for this	b) Trauma, osteoporosis, pathological	At least 2 causes
Subject: CBB	finding.	b) Trauma, osteoporosis, patriologicar	
	c) Which complications would you look for?	 c) Looking for neurological compromise (weakness, sensory loss, bowel or bladder dysfunction) 	2 signs to pass
Stem: Moving onto	Anatomy.		
Question 5	a) Identify this bone and	a) Thoracic vertebrae	Thoracic vertebra plus 5
Thoracic vertebra	demonstrate its bony	Body, Pedicle, Transverse process	
(bone)	features	Articular facets – Superior and inferior Costal facets – Superior/Inferior costal facets	
(bolic)		(head of rib); Transverse costal facet (tubercle of	
Subject: Anatomy		rib)	
_		Spinous process, Lamina	
LOA: 1 <i>Moore's 7th edition</i>		Vertebral foramen and space for intervertebral	
Fig 1.4 & 1.5 p.77		foramina	
	b) What movements occur at the thoracic vertebra?	b) Rotation, some lateral flexion, very limited flexion and extension	Bold
	c) List the ligaments responsible for the stability of the spine	c) Anterior longitudinal, posterior longitudinal, Supraspinous, Ligamentum Flavum	3 to pass

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 ECG Subject: CBB	Describe her ECG Prompt: What is your interpretation of the ECG?	Sinus rhythm, rightward axis, ST elevation Leads V2-V5 and aVL. ST depression II, III, aVF (Q waves absent) Anterolateral STEMI with reciprocal inferior changes.	Bold to pass
Stem: She is a T	ype 1 diabetic. Moving on to Pharmacol	ogy	
Question 2 Insulin Subject:	a) What is the mechanism of action of insulin?b) What different formulations of insulins are there	 a) Promotes the uptake of glucose from blood into tissues, esp. fat, liver, and skeletal muscle and promotes glycogen synthesis (Insulin receptors found on cell membranes) b) Rapid and short acting. Clear solution, neutral pH, contain Zn, rapid onset, short duration of action. 	Bold to pass
Pharm	(prompt - please describe in terms of duration of action and name an ex-	examples: insulin neutral, insulin lispro, insulin glulisine Intermediate acting	Bold to pass plus 2 of 3 correct insulins
LOA: 1	ample from each group)	Turbid solution, neutral pH, protamine in phosphate buffer (NPH) to prolong action examples: insulin isophane, insulin aspart protamine Long acting Clear solution, soluble, slow onset, prolonged action. Daily administration mimics basal insulin secretion examples: insulin glargine, insulin detemir	
	c) How are their differing properties used to optimize glycaemic control	c) Combination of insulins with different durations of actions aim to replace basal insulin requirement (50%) and meal requirement (50%).	Concept to pass
	d) Give another Emergency Depart- ment use for insulin other than the regulation of blood glucose	d) Management of hyperkalaemia, Ca ⁺⁺ channel blocker overdose (+/- Beta-blocker)	One alternate use to pass
Stem: Moving o	on to Anatomy		
Question 3 Heart (model) Subject: Anat	a) Demonstrate on this model the ar- terial supply of the heart. (Prompt - can you name the main branches of the coronary arteries?)	a) Right coronary artery - gives off SA nodal branch (60%), right marginal branch, AV nodal branch, posterior interventricular 2/3, inter ventricular septal. Left coronary artery - gives off circumflex artery which branches to give the SA nodal artery in 40%, left marginal artery, posterior interventricular (15%).	Bold to pass
LOA: 2	b) Occlusion of which vessel would result in an anterolateral STEMI?	Left coronary artery - gives off LAD which supplies anterior 2/3 septum, lateral diagonal. b) Proximal LAD (before first diagonal branch)	LAD
	c) Describe the venous drainage of the heart? Prompt; What is the final common ve- nous tributary that empties into the heart called?	c) Coronary sinus (6), Great cardiac veins (accompanies LAD then LCX), Middle cardiac veins (accompanies PIV), Small cardiac veins (accompanies R marginal), Left posterior ventricular, Left marginal, Anterior cardiac (start ant. surface RV, drain straight into R atrium), Oblique veins on left atrium, Venae cordis minimae (drain direct into chambers)	Coronary sinus plus one other to pass

Question 4 Fluid and oe- dema	a) What factors govern the move- ment of fluid between the vascular and interstitial spaces?	 Hydrostatic pressure Colloid osmotic pressure Normal capillary walls - most protein remains intrava Fluid out of vessel at arteriolar end. Most fluid returned 	2 bold plus concept	
Subject: Path b) What are the major mechanisms of oedema formation? Give exam- ples of each.		 amount of fluid returns via lymphatics. 1 Increased hydrostatic pressure (i) Local venous; venous obstruction, compression, thrombosis (ii) Local arteriolar; dilation, heat, neurohumeral dysregulation (iii) Systemic; CCF, constrictive pericarditis, impaired venous return 2. Reduced plasma oncotic pressure (mainly protein loss e.g. nephrotic syndrome or poor production e.g. cirrhosis, malnutrition, gut loss). 3. Inflammation - acute or chronic inflammation, angiogenesis 4. Lymphatic obstruction - Inflammatory, neoplastic, post-surgical, post irradiation, 5. Sodium retention with water - renal insufficiency, activation of renin-angiotensin system, 		3 out of 5 bold, must include hydro- static and COP. 5 conditions covering three groups
	c) What are the clinical features of heart failure?	 renal hypoperfusion. Lung - dyspnoea, orthopnoea, PND, APO, pleural effu Cardiac - 3rd heart sound, displaced apex beat, AF, n Renal - fluid retention, pedal oedema, AKI. Brain - confusion secondary to hypoxia. Hepatic - congestion, ascites, cirrhosis late 		3 of 5 organ system symptoms to pass
Stem: Moving o	n to Physiology			
Question 5 Cardiac pace- maker Subject: Physi- ology LOA: 1	a) Draw the action potential in a car- diac pacemaker cell and explain the ionic fluxes.	 1. 'Funny' sodium channels (I_f channels) are open (ÎP_{Na}⁺); and closing K⁺ channels. 2. Transient Ca²⁺ (T-type) channels open, pushing the membrane potential to threshold. 3. Long-lasting Ca²⁺ (L-type) channels open, giving rise to the action potential. 4. Opening of K⁺ channels, (ÎP_K⁺), and closing of Ca²⁺ (L-type) channels, hyperpolarising the cell +20 +10 0 -10 -10<td> i) Pre potential due to increased influx of Na via 'funny channels' (open in response to hyperpolarisation), decrease of K efflux, then completed by influx of Ca through T channels ii) Action potential due to influx of calcium via L channels iii) Repolarisation due to efflux of K, no plateau </td><td>Correctly drawn ac- tion potential curve and 2 out of 3 bold sections to pass</td>	 i) Pre potential due to increased influx of Na via 'funny channels' (open in response to hyperpolarisation), decrease of K efflux, then completed by influx of Ca through T channels ii) Action potential due to influx of calcium via L channels iii) Repolarisation due to efflux of K, no plateau 	Correctly drawn ac- tion potential curve and 2 out of 3 bold sections to pass
	b) What is the effect of sympathetic and parasympathetic stimulation on the prepotential?	i) Noradrenaline binds to Beta 1 receptors and raises cA and Ca influx. Increased slope of prepotential and incre ii) Acetylcholine binds to M2 receptor and decreases cA cium channel opening and opening of special K channel greater fall in prepotential. Leads to decreased slope of	eased firing rate. MP resulting in both slowing of cal- s (counter decay of K efflux) leading to	Bold to pass

Stem: A 23-ye	ar old woman with a history of intravenous	drug use presents with severe dyspnoea.	_
ΤΟΡΙϹ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 CXR	a) Please describe the major abnormali- ties on her chest x-ray	Lung parenchyma - diffuse opacities throughout	Bold
Subject: CBB	b) What could be the causes of these findings?	Causes: aspiration, ARDS, infection (pneumonia/pneumonitis), interstitial oedema	2 causes
Stem: She req	uires urgent intubation. Moving on to Phari	macology.	
Question 2 Rocuronium	a) What type of drug is Rocuronium?	Nondepolarizing muscle relaxant. Steroid derivative	Bold
Subject: Pharm LOA: 1	b) What are the pharmacokinetics of Rocuronium?	Absorption: IV BA = 1 Dose: 1.2 mg/kg (accepted range 0.9-1.2mg/Kg) Onset: 45-60sec Duration: 20 – 75 minutes Metabolism: liver Elimination: Liver 75-90%, and kidney	3 Bold
	c) How does Suxamethonium differ from Rocuronium?	Duration of action is much shorter, Sux 5-10 min Different side effects and contraindications Sux is a depolarizing muscle relaxant with phase I and Phase II. Phase I is augmented by pseudocholinesterase inhibitors Sux is metabolized by plasma pseudocholinesterase Roc has an antidote – sugammadex	Bold plus 2
Stem: The pat	ient has Acute Respiratory Distress Syndron	ne. Moving on to Pathology.	•
Question 3 ARDS	a) Describe the pathogenesis of ARDS	Initial injury to alveolar capillary membrane (endothelium); acute inflammatory re- sponse (neutrophil mediated); results in increased vascular permeability and alveolar flooding; fibrin deposition; formation of hyaline membranes; and widespread surfac -	3 Bold
Subject: Path		tant abnormalities (damage to Type II pneumocytes); eventually – organisation with scarring	
LOA: 1	b) What conditions are associated with the development of ARDS?	 Infection (sepsis, diffuse pulmonary infection, gastric aspiration) Physical / Injury (trauma – head, pulmonary, fractures, near drowning, burns, radiation) Inhaled irritants (O2 toxicity, smoke, irritant gases and chemicals) Chemical injury (Heroin, barbiturate, acetylsalicylic acid, Paraquat) Haematological conditions (multiple transfusions, DIC) Other (pancreatitis, uraemia, cardiopulmonary bypass, hypersensitivity – organic solvents, drugs) 	1 example from 3 groups

Stem: You pro	ceed to intubate the patient. Moving on to	Anatomy.	
Question 4 Larynx (model)	a) Identify the key structures on this model.	Tongue, vallecula, epiglottis, cricoid, vocal cords, trachea, thyroid cartilage, hyoid bone	Bold plus 2 others
Subject: Anat	b) What is the nerve supply of the mus- cles of the larynx?	Recurrent laryngeal nerve (derived from vagus) supplies all the muscles except for the cricothyroid muscle – supplied by the external laryngeal n.	Bold
LOA: 1	c) Demonstrate the landmarks for a cricothyroidotomy?	Thyroid cartilage, cricoid cartilage, cricothyroid membrane	Bold
	d) Which cartilage in the larynx is fully circumferential?	Cricoid cartilage	
Stem: Once int	tubated, she is difficult to ventilate. Movin	g on to Physiology.	
Question 5 Lung compli- ance	a) What is pulmonary compliance?	Compliance = volume change/pressure change ($\Delta V / \Delta P$), maximal in mid inspiration, lower at extremes, approx. 200ml/cm H20	Bold with concept
Subject: Phys	b) What factors decrease or increase pulmonary compliance?	Decreased: alveolar oedema, pulmonary fibrosis, pulmonary venous hypertension, unventilated lung, Increased: age, emphysema	3 examples 1 example
LOA: 1	c) What are the physiological effects of surfactant of the lung?	 i. Increased lung compliance ii. Reduced work of breathing iii. Improved stability of alveoli iv. Keeps alveoli dry 	2 of 4

Stem: A 40-year-ol	ld man presents with haematemesis. His pulse is 12	20 / minute and blood pressure is 90/60 mmHg. We will st	art with Physiology.
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	a) Describe the factors affecting Cardiac Output	CO=SVxHR	Bold + 2 mechanisms from each
Cardiovascular		SV related to contractility, preload and afterload,	SV and HR
response to mod-		HR controlled by intrinsic rate, autonomic, exogenous	
erate haemor-		factors, heat, thyroid	
rhage	b) What are the physiological responses to los-	Acutely: $-\downarrow$ venous return, reduced stimulation of bar-	Bold and 2
	ing 1L of blood in an adult?	oreceptors, catecholamine release, tachycardia, vaso-	
Subject: Phys		constriction	
	Prompt: Are there any other non-cardiovascu-	12 to 72 hours: - \downarrow renal blood flow – activation of	Bold with some explanation
LOA 1	lar responses	renin angiotensin system fluid shifts	
	Prompt: Are there any late compensatory re-	3 to 4 days: - hepatic synthesis of proteins increasing	
	sponses?	PP	
		10 days+: - increased RBC production by 个 EPO	Bold
	on tests were performed.		
Question 2	a) Please describe these results	Acute hepatitis	Bold with justification e.g. trans-
LFTS (acute hepa-		(elevated bilirubin, ALP, GGT, transaminases, INR; hy-	aminitis (mild ALP elevation also)
titis)		poglycaemia)	
		Impaired synthetic function (low albumin, abnormal	
Subject: CCB		Coags)	
	b) What are possible causes for this blood pic-	Alcohol, viral (A, B(+/-D), C, E, EBV, CMV) toxins (para-	Alcohol plus 1 toxin/drug
	ture?	cetamol, isoniazid, methyl-dopa, methotrexate, mush-	and 2 viruses
		rooms), others e.g. a-1-AT deficiency, Wilson's disease,	
		Al diseases	
Stem: He has a hist	tory of heavy alcohol use. Moving on to Pathology.		
Question 3	a) Describe the pathological features of the	1. Hepatic steatosis- fatty change, perivenular fibrosis	Pass
Alcoholic Liver	liver in alcoholic liver disease?	2. Hepatitis: liver cell necrosis, inflammation, Mallory	
Disease		bodies, fatty change, fibrosis	
	PROMPT: please describe the morphological	3. Cirrhosis: extensive fibrosis, hyperplastic nodules	
Subject: Pathol-	features	4. Hepatocellular carcinoma	
ogy			
	b) Which of these features are reversible?	Steatosis and Hepatitis are reversible. Cirrhosis irre-	Bold to pass
LOA 1		versible.	
	c) What are the possible sequelae of cirrhosis?	Portal Hypertension, GIT Bleeding, Hepatic Failure,	Bold plus 3
		Coagulopathy, Hepatocellular Ca, Hepatorenal Syn-	
	Prompt: Complications?	drome, Hepatopulmonary Syndrome, Encephalopathy,	
		Infection	

Question 4	a) Identify the main structures	Lobes – Right (24), left (14), caudate (2), quadrate (21)	Identify right and left lobes of
Liver		Vascular – IVC (13), Hepatic art (11), Portal vein (20)	liver, portal vein and gall bladder
		Biliary – common hepatic duct (5), gallbladder (9)	
Subject: Anat-		Ligaments – coronary (12), L triangular (15), R triangu-	
omy LOA 1		lar (25), ligamentum teres (17), Diaphragm (6)	
	b) Describe the anatomy of the biliary tree.	L & R hepatic ducts run into common hepatic duct	4 out of 6 to pass
	Prompt: Draw the biliary tree	Joined by cystic duct from gallbladder to become	
		common bile duct which runs into duodenum	
Stem: His treatme	ent includes the administration of Octreotide. Movi	ng on to Pharmacology.	
Question 5	a) What is the mechanism of action of Oc-	Somatostatin analog, reduces splanchnic & portal	Bold plus general concept
Octreotide	treotide?	blood flow by poorly understood mechanism & hence variceal pressures.	
Subject: Pharm		Inhibits endocrine & paracrine factor secretion includ-	
·		ing insulin, glucagon, gastrin, GH, TSH,	
LOA 2	b) What are the routes of administration for oc- treotide?	IV, IM, SC	Any 2 to pass
	c) What are its adverse effects?	Anaphylaxis,	Any 2 to pass
		Local irritation during injection (redness, burning)	
		GIT symptoms (nausea & vomiting, decreased intesti-	
		nal motility, bowel obstruction, cholelithiasis)	
		Hypo/hyper glycaemia	
		Cardiac – sinus bradycardia, conduction disturbances	

ACEM PRIMARY VIVA C Thursday Morning Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Please describe the X- ray.	Posterior dislocation of right elbow.	Bold to pass
	Prompt: What is the	Radial head, coronoid process of ulna, articular surfaces of humerus	
Elbow x-ray	abnormality and	(trochlea or capitulum/capitellum). Empty olecranon fossa.	
	outline the bony	Bony fragment in olecranon fossa	
Subject: CBB	features?	Nil other obvious injury.	
	What other important	Median nerve and brachial artery (anterior)	2 of 3, and indicating
	adjacent structures are at	Ulnar nerve (posteriomedial)	correct location of one
	risk from this injury?		on XRay to pass
	Prompt: Where do		
	they lie in relation to		
	the elbow?		-
Stem: Moving on t	to Pharmacology. He was given K	etamine to reduce the injury.	
Question 2	Describe the	NMDA receptor antagonist. Inhibits reuptake of catecholamine and	Bold to pass
	pharmacodynamics of	serotonin. Potent short acting sedative, amnestic, analgesic and	
Ketamine	ketamine.	anaesthetic agent	
Subject: Pharm	What are the systemic	<u>CNS</u> : dissociative anaesthesia . (Cataleptic state) Profound analgesia .	Bold + 1 other
	effects of Ketamine?	Cerebral vasodilator and increases cerebral blood flow and cerebral metabolic rate (Increases ICP – not clinically significant). May have	
LOA: 1		anticonvulsant properties	
		CVS: haemodynamically stable, increases HR, BP and cardiac output,	
		cardiac workload and myocardial oxygen consumption.	
		Respiratory: Intact airway reflexes. Min. respiratory depression.	
		Causes lacrimation and salivation that may cause laryngospasm in	
		children.	
		Bronchodilator.	
		<u>Ocular</u> : nystagmus	
	What are the adverse	CNS - emergence phenomenon - dysphoria, hallucinations, seizures	One adverse effect
	effects?	GI – vomiting	
		Resp – Laryngospasm, increased salivation	

Stem: Moving on to	Anatomy. Following reduction, he complain	ns of numbness in his fingers	
Question 3 Ulnar nerve	Describe the course of the ulnar nerve around the elbow.	Passes through the elbow posterior to the medial epicondyle of the humerus.	Bold
Subject: Anatomy			
(Discussion)	What clinical findings would you expect if the ulnar nerve is injured at the elbow?	 Sensory, loss of sensation- Medial half of the palm - Palmar cutaneous branch Medial one and a half fingers, and the associated 	sensory
LOA: 1		 dorsal hand area - Dorsal cutaneous branch Palmar surface of the medial one and a half fingers Superficial branch 	
	Prompt: What motor findings would you expect	Motor, unable to- • FLEX and ADDUCT hand at wrist - Flexor carpi ulnaris	2 of 5 motor
	What does ulnar nerve supply?	 FLEX Distal interphalangeal joints of 4th and 5th digits - Flexor digitorium profundus III and IV FLEX and ABDUCT 5th MCPJ - Hypothenar muscles: Abductor digiti minimi, Opponens digiti minimi, Flexor digiti minimi ADDUCT thumb - Adductor pollicis, half of flexor 	
		 ADDUCT thumb - Adductor policis, half of nextor policis brevis ABDUCT and ADDUCT 4th and 5th fingers - Interosseous muscles, 3rd and 4th lumbricals 	
	How would you differentiate an ulnar nerve lesion at the elbow from one at the wrist? (Bonus question)	More pronounced claw hand if lesion is more distal as FCU and FDP preserved.	Concept to pass

Subject:How is it different from the withdrawal reflex?Withdrawal reflex is a Polysynaptic reflex.Bold to passPhysiologyreflex?Also has afferent and efferent limbs, but sensory organ is nociceptor (painful stimulus). Central integratorBold to pass	Bold to pass
Subject: PhysiologyHow is it different from the withdrawal reflex?Withdrawal reflex is a Polysynaptic reflex. Also has afferent and efferent limbs, but sensory organ is nociceptor (painful stimulus). Central integrator consists of polysynaptic connections in the spinal cord i.e. one or more interneurons and interposed between afferent and efferent neurons. Efferent limbs are motor nerves to effector muscles on the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb andBold to pass	
Physiologyreflex?Also has afferent and efferent limbs, but sensory organ is nociceptor (painful stimulus). Central integratorLOA: 1Prompt – describe a polysynaptic reflexconsists of polysynaptic connections in the spinal cord i.e. one or more interneurons and interposed between afferent and efferent neurons. Efferent limbs are motor nerves to effector muscles on the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb and	
LOA: 1 Prompt – describe a polysynaptic reflex is nociceptor (painful stimulus). Central integrator consists of polysynaptic connections in the spinal cord i.e. one or more interneurons and interposed between afferent and efferent neurons. Efferent limbs are motor nerves to effector muscles on the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb and	Bold to pass
LOA: 1Prompt – describe a polysynaptic reflexconsists of polysynaptic connections in the spinal cord i.e. one or more interneurons and interposed between afferent and efferent neurons. Efferent limbs are motor nerves to effector muscles on the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb and	jan 🛛
i.e. one or more interneurons and interposed between afferent and efferent neurons. Efferent limbs are motor nerves to effector muscles on the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb and	
afferent and efferent neurons. Efferent limbs are motor nerves to effector muscles on the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb and	ord
Efferent limbs are motor nerves to effector muscles on the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb and	en
the ipsilateral and contralateral sides. Flexion and withdrawal of the ipsilateral limb and	
Flexion and withdrawal of the ipsilateral limb and	on
extension of the contralateral limb.	
	b

Question 5	(a) What is atrophy?	Decrease in the size of an organ or tissue resulting	Bold to pass
Atrophy		from a decrease in cell size and number. Can be physiological or pathological.	
Subject : Pathology Robbins 9 th Ed, pages 36-37	(b) What are the causes of atrophy?	Decreased workload (eg.# immobilized in plaster) Denervation Diminished blood supply (eg.due to arterial occlusion)	4 of 7 bold
LOA: 1		Inadequate nutrition (eg. protein-calorie deficit - marasmus-> use of adipose stores + muscle for energy) Loss of endocrine stimulation (eg. endometrial atrophy after menopause). Ageing	
		Pressure	
	(c)What are the mechanisms of atrophy?	Decreased protein synthesis Increased protein degradation. May be accompanied by increased autophagy (self- eating) - where a starved cell eats its own components in an attempt to find nutrients and survive.	One bold to pass

ACEM PRIMARY VIVA C Thursday Afternoon

Candidate Number:

Stem: An 85 year old man presents with heart failure. He is on verapamil. We will start with Pharmacology.			
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Subject: Pharm Verapamil	Describe the mechanism of action of verapamil.	Blocks voltage gated L-type calcium channels (α1 subunit), reduced frequency of opening when depolarized resulting in decreased transmembrane calcium current and calcium influx.	Bold + concept of blocking Ca influx
LOA: 1	Describe the effects of verapamil on the heart and blood vessels.	Reduced contractility/CO, oxygen demand, Reduced impulse generation/AVN conduction block. Vascular smooth muscle relaxation (less than dihydropyridines) or reduced coronary artery spasm.	2 of 3 bold
	What are the adverse effects of verapamil?	CVS; bradycardia/AV block , cardiac arrest, heart failure , hypotension Minor: flushing, dizziness, nausea, constipation, peripheral oedema.	2 of 3 bold

Stem: Moving on	Stem: Moving on to Physiology.			
Question 2 Subject: Physiology	What two factors determine cardiac output?	CO = HR x SV SV is related to preload and afterload of the heart and the intrinsic contractility of the myocardial cells. HR – sympathetic versus parasympathetic stimulation.	Bold	
Cardiac Output				
LOA: 1	Can you draw a graph to show the Frank Starling law as it relates to cardiac muscle?	Frank – starling curve	Correctly draws and labels curve and able to discuss reason for dotted lines.	
	What factors shift the Frank Starling curve?	Circulating catecholamines Inotropes (caffeine, theophylline, digitalis) Sympathetic input All shift the curve up and to the left.	Two positive and two negative factors.	
		Acidosis/Hypercarbia/Hypoxia Vagal/parasympathetic stimulation Pharmacological depressants (quinidine, procainamide & barbiturates) Intrinsic depression (with heart failure) All shift the curve down and to the right.		
		(The causes of this depression are not fully understood but may reflect down-regulation of β -adrenergic receptors and associated signaling pathways and impaired calcium liberation from the sarcoplasmic reticulum).		

Stem: The patient has right leg pain. This is a photo of his lower limbs.			
Question 3 CCB	(a) Please describe the appearance of the right leg?	Cyanotic, Mottled, slightly swollen right leg/foot, shiny skin. Wasting.	Any two to pass
Photo of legs			
Clinical Building Block	(b) What are potential causes for these changes?	Arterial occlusion, venous occlusion, small vessel occlusion, microemboli (trash foot) stasis/occlusion/insufficiency. Cellulitis	Any two to pass

Stem: Moving on to	o Anatomy. As part of your assessme	nt you examine the distal pulses in the lower limb.	
Question 4 Subject: Anat Image of foot showing arteries.	Where do you palpate the distal pulses?	PT – Between the medial malleolus and the achilles tendon DP - Mid arch between the 1 st and 2 nd metatarsal or lies midway between malleoli or between EHL and EDL/EBL	Both
Arterial Supply of the Foot LOA: 1	Identify the dorsalis pedis artery and the surrounding landmarks on this image.	Able to point out Dorsalis Pedis artery (3), EHL (7), EDL (5)/EBL (6), metatarsals	DP and one adjacent structure to pass
	Describe the venous drainage of the foot.	 Superficial and deep veins. Deep: paired veins which accompany all arteries internal to the deep fascia. Superficial: subcutaneous and not accompanied by arteries. Perforating veins provide one-way shunting of blood from superficial to deep veins. Dorsal venous network/arch of digital and metatarsal veins drain into the dorsal venous arch of the foot. Plantar venous network forms the medial marginal vein which becomes the great saphenous vein or lateral marginal vein which becomes the small saphenous vein. 	Bold to pass

Stem: Moving on	to Pathology. Venous thrombosis is considered	d to be the most likely cause for his leg swelling.	
Stem: Moving on Question 5 Subject: Path Thrombosis LOA: 1	 to Pathology. Venous thrombosis is considered 1. What pathological mechanisms may contribute to venous thrombus formation in a vessel? 2. What are some of the different risk factors for venous thrombosis? Prompt: You have named one genetic risk factor, can you name another one? Prompt: You have named one relating to X (e.g. stasis), can you name others with different mechanisms? 	 a to be the most likely cause for his leg swelling. Endothelial injury (damage to vessel), alteration in blood flow (stasis, turbulence), hypercoagulability of blood. Primary (genetic) Mutations – Factor V Leiden, prothrombin gene Increased levels – factors VIII, IX, XI, fibrinogen Deficiencies – AT3, protein C, S Fibrinolysis defects, homozygous homocysteinuria Non O blood group Secondary (acquired) Stasis – (e.g. prolonged bed rest, immobilization, long distance travel) Tissue injury (e.g. MI, surgery/burns/fractures) AF Cancer Prosthetic cardiac valves/devices 	All bolded to pass. 2 examples of genetic causes and 2 non genetic causes with <i>different</i> <i>mechanisms</i> (i.e. from a different line) to pass.
		 Indwelling vascular devices (e.g. PICC, CVC etc) External vessel compression (e.g. pregnancy (>20 weeks) May Thurner syndrome, etc) Platelet abnormalities (e.g. DIC, HITS, Thrombocytosis) Cardiomyopathy, nephrotic syndrome, Hyperoestrogenic states (pregnancy, post-partum, OCP etc.) Sickle cell anaemia Smoking Antiphospholipid syndrome Hyperviscosity states (PCRV, leukaemia, hyperproteinaemia) 	
	3. What are possible outcomes of a venous thrombus in a vessel?	Propagation (eg resulting occlusion), embolisation, dissolution, organization, recanalisation.	3 of 5 to pass.

ΤΟΡΙϹ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Drug clearance Subject:	What is drug clearance?	Measure of the ability of the body to eliminate a drug. Rate of elimination in relation to the concentration OR Vol of plasma cleared of a drug per unit time.	Reasonable definition concept of rate over time
Pharmacology LOA: 1 <i>Katzung 13th pp 42-46</i>	What factors affect clearance?	Concentration – dose/ bioavailability Elimination – specific organ function /blood flow /protein binding Major sites of elimination are kidneys and liver – therefore factors that affect these organs function and blood flow will have most effect	One factor for each element
	What is the difference between capacity limited and flow dependent drug elimination? (prompt – what are the differences in elimination kinetics?)	 Capacity limited – is saturable (zero order) e.g. aspirin, phenytoin, ethanol (so clearance varies depending on drug concentration). Flow dependent – is non-saturable (1st order) – most of drug is cleared on 1st pass of blood through an organ, so elimination depends on the rate of drug delivery to the organ - and hence on blood flow. Plasma protein binding and blood cell partitioning may also play a small role. e.g. Amitriptyline / imipramine / Labetalol / Lig/ Morphine / Verapamil 	Bold

Stem: Moving o	on to Pathology. The knee sv	vells over several hours following the injury	
Question 2 Oedema	a) What is oedema	Increased interstitial fluid	Bold
Robbins 9 th edition pages 113-115 Subject: Path LOA: 1	 b) What are some of the causes of oedema (prompt, what are the non-inflammatory causes) 	 Inflammatory (acute / chronic):- infection, tissue necrosis, foreign body, immune, traumatic Non-inflammatory: - increased hydrostatic pressure (eg cardiac failure, DVT), hypoproteinaemia (chronic liver disease, nephrotic syndrome), lymphatic obstruction, sodium retention 	2 examples from each to pass
	c) What is the difference in the composition of the fluid, between inflammatory and non-inflammatory oedema	Inflammatory: - exudate, high protein conc, Non-inflammatory: - transudate, low protein conc (effectively an ultrafiltrate of plasma)	Must know
Stem: A knee x	-ray is performed.	1	
Question 3 Knee x-ray Subject: CBB LOA:1	Describe this X ray Prompt – is there anything else on the lateral view?	Tibial plateau fracture, depressed lateral condyle, lipohaemarthrosis (on lateral view)	Must identify lateral tibial condyle fracture and joint effusion

Stem: Moving	Stem: Moving on to Anatomy			
Question 4 Model knee ligaments Subject: Anatomy Moore 7 th	Identify the ligaments and tendons of the knee on this model	Ligaments: Med (tibial) collateral, Lat. (fibular) collateral, Ant cruciate, Post cruciate, posterior meniscofemoral, lat meniscofemoral (not on model) Tendons: Quadriceps, patellar	4 bolded + one correctly named tendon to pass	
Pp 636-642 LOA: 1	What are the functions of the cruciate ligaments	 ACL: Prevents posterior displacement of femur on tibia. Prevents hyperextension of the knee. Limits posterior rolling of the femoral condyles on tibial plateau in flexion PCL: Limits anterior rolling of the femur on the tibial plateau in extension. Prevents anterior displacement of the femur on tibia. 	1 of 3 1 of 3	
	Describe the medial meniscus and its attachments	Helps prevent hyperflexion of the knee. Crescentic. Fibrocartilage. Thickens towards joint margins. Ant horn attached to anterior intercondylar area of tibia anterior to ACL. Post horn attached to post intercondylar area of tibia anterior to PCL. Firmly attached to TCL (deep MCL or MCL) Less mobile than the lat meniscus	3 of 7 must include 1 attachment	

Stem: Moving o	Stem: Moving on to Physiology. He has painful quadriceps muscle cramping in the injured limb.		
Question 5	Define the resting membrane potential of a	Potential difference across the membrane at rest with inside negative relative to outside	Bold
Resting membrane	nerve	In nerves, it is – 70 mV	
potential	How is this resting membrane potential	The gradients are actively maintained by NA⁺/K⁺ ATPase NA ⁺ /K ⁺ ATPase actively pumps Na out and K into the cell using ATPase for energy.	Bold + concept Na
Subject: Phys	maintained?	Na then passively flows back into the cell via channels down concentration gradient, and K passively flows out of cell via K channels down concentration	out and K in Passive flow
LOA: 1 Ganong 25 th Pp90, 130, 131, 14		gradient. BUT at rest, there are more open K channels than Na channels, so the permeability to K is greater (passively).	in opposite direction
17	Describe the sequence of events that occur at the motor end plate following discharge of a motor neuron	Activation of voltage gated Ca2+ channels in presynaptic membrane Calcium influx into the cell Exocytosis of preformed ACh into synaptic cleft Diffusion of ACh across synaptic cleft Binds to post synaptic nicotinic receptor Increase Na+ and K+ conductance in end plate membrane (muscle) Generation of end plate potential. Generation of action potential in muscle fibres. Spread of depolarisation along T tubules.	6 of 12 steps
		Ca++ released from Sarcoplasmic Reticulum (diffusion to thick and thin filaments). Binding of Ca++ to trop C uncovering myosin-binding sites on actin. Actin-myosin binding and sliding of thin on thick filaments producing movement	
	Describe what occurs to the ACh released at the motor end plate?	ACh removed from synaptic cleft by Acetylcholinesterase Choline re-uptake Acetate to liver and metabolised	

Stem: A 75-year-old m	an presents ronowing a collapse	e. His GCS is 6/15. We will start with Physiology.	
ТОРІС	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	(a) What factors affect cerebral blood flow?	 Intracranial pressure Mean arterial pressure 	2 of 3 Bold
Cerebral blood flow		 Mean venous pressure at brain level Local factors: pH, pCO2 – constriction and 	
Subject: Physiology		dilatation of cerebral arterioles 5. Blood viscosity	
LOA: 1			
Ganong,25 th edition.	(b) What is meant by the term autoregulation of	The process by which CBF is maintained at a constant level (approx. 750ml/min) despite	Understanding of concept.
Chapter 33 Circulation through	cerebral blood flow? (You may draw a	variation of arterial pressure (MAP 65 – 140mmHg)	10 50 -
special regions. Cerebral blood flow and its regulation.	diagram).		70 140 Arterial pressure (mm Hg) Figure 33-9 @ Autoregulation of cerebral blood flow (CBF) during steady
	(c) What is the Monro-	Volume of blood, CSF and brain tissue must be	Understanding of concept.
	Kellie doctrine?	relatively constant. When ICP rises, cerebral vessels are compressed resulting in reduced	
	(prompt: what is the relationship between	cerebral blood flow. Rise in venous pressure also causes decreased cerebral blood flow by	
	volume of blood, volume of CSF, and brain tissue)	decreasing effective perfusion pressure and compressing cerebral vessels.	

Stem: It is planned to	intubate him. Moving on to Pharmac	ology.	
Question 2	(a) What physiological changes	Distribution:	Mention at least 3
	in the elderly may influence	Body water - decreased	physiological
Drugs in the elderly	the pharmacokinetic	Lean body mass - decreased	changes
	properties of drugs	Body fat - increased	
Subject:		Serum albumin – decreased	
Pharmacology		Metabolism:	
		Liver metabolism changes inconsistent.	
LOA: 2		Hepatic blood flow - decreased	
		Elimination:	
Katzung 13 th , 1025-		Kidney weight (% of young adult) - decreased	
1027		Reduced creatinine clearance with age.	
		Polypharmacy and multiple drug interactions/toxicity	
	(b) What changes would you	Reduce the initial dose, wait longer before administering a	
	make to the administration of intravenous morphine in	second IV dose, increase interval between repeat doses	At least 1 dose adjustment with
	this patient compared to a	The elderly are often markedly more sensitive to the	correct explanation
	younger one and why?	respiratory effects of opioid analgesics because of age-	
	, , , ,	related changes in respiratory function.	
		Increased distribution time to the CNS due to reduced	
		cardiac output.	
		The elimination half-life of morphine will be increased	

Question 3	(a) Describe this CT Brain	Large left basal ganglia intraparenchymal haemorrhage	2 Bold and one
CT Brain – intracerebral haemorrhage	Prompt can you see blood anywhere else?	with intraventricular extension and mass effect: There is compression of the left frontal and parietal lobes, compression of the thalamus, 1 cm midline shift to the right, enlargement of the posterior horn of the left lateral ventricle	other description of mass effect to pass
Subject: CBB			
	(b) What potential clinical complications can occur as a result of this?	Decreasing GCS, focal neurological deficits, compromised airway, seizures, impending 'coning' (dilated pupil, bradycardia, hypertension), death If the patient survives, there will be severe neurological deficit and disability	At least 2 complications
Stem: Moving on to	Anatomy. A Femoral central line is inse	rted.	
Question 4	(a)Identify the boundaries of the	Superior: Inguinal ligament (11)	3/4 Boundaries
	femoral triangle on this image	Medial: Medial border of add longus (1)	with structure
Femoral triangle			
Femoral triangle (Mc Minns Atlas Photo 365A)		Medial: Medial border of add longus (1)	
(Mc Minns Atlas		Medial: Medial border of add longus (1) Lateral: Sartorius (23)	
(Mc Minns Atlas	femoral triangle on this image	Medial: Medial border of add longus (1) Lateral: Sartorius (23) Floor: Iliopsoas (not seen) and pectineus (19)	with structure
(Mc Minns Atlas Photo 365A) Subject: Anatomy	femoral triangle on this image (b)Name and demonstrate the	Medial: Medial border of add longus (1) Lateral: Sartorius (23) Floor: Iliopsoas (not seen) and pectineus (19) Femoral nerve (5), artery (4) and vein (6) (medial -	with structure
(Mc Minns Atlas Photo 365A)	femoral triangle on this image (b)Name and demonstrate the contents	Medial:Medial border of add longus (1)Lateral:Sartorius (23)Floor:Iliopsoas (not seen) and pectineus (19)Femoral nerve (5), artery (4) and vein (6) (medial -lateral)Deep inguinal lymph nodes (29), lymphatics (15)	with structure
(Mc Minns Atlas Photo 365A) Subject: Anatomy	femoral triangle on this image (b)Name and demonstrate the	Medial:Medial border of add longus (1)Lateral:Sartorius (23)Floor:Iliopsoas (not seen) and pectineus (19)Femoral nerve (5), artery (4) and vein (6) (medial - lateral)	with structure
(Mc Minns Atlas Photo 365A) Subject: Anatomy	femoral triangle on this image (b)Name and demonstrate the contents (c)Which spinal roots is the femoral	Medial:Medial border of add longus (1)Lateral:Sartorius (23)Floor:Iliopsoas (not seen) and pectineus (19)Femoral nerve (5), artery (4) and vein (6) (medial -lateral)Deep inguinal lymph nodes (29), lymphatics (15)	with structure All 3 bold Bold
(Mc Minns Atlas Photo 365A) Subject: Anatomy	femoral triangle on this image (b)Name and demonstrate the contents (c)Which spinal roots is the femoral	Medial: Medial border of add longus (1) Lateral: Sartorius (23) Floor: Iliopsoas (not seen) and pectineus (19) Femoral nerve (5), artery (4) and vein (6) (medial - lateral) Deep inguinal lymph nodes (29), lymphatics (15) L2 L3 L4	with structure All 3 bold Bold

Stem: Moving on to Pathology. The patient has an intracerebral haemorrhage.			
Question 5 Intracerebral haemorrhage	(a) What are the main pathophysiological causes of spontaneous intracerebral haemorrhage?	Hypertension and cerebral amyloid are the main causes. Other causes include systemic coagulation disorders, neoplasms, vasculitis, aneurysms, and vascular malformations.	1 of 2 bold and two others to pass
Subject: Pathology			
LOA: 2	(b) Which areas of the brain do hypertensive intracerebral haemorrhages most	Hypertensive intracerebral haemorrhage may originate in the putamen (50% to 60% of cases), thalamus, pons, cerebellar hemispheres (rarely)	At least two to pass
Robbins and Cotran's Pathologic Basis of Disease; 9 th	commonly occur?	Accept basal ganglia, brainstem	
Edition; Chapter 28: The Central Nervous System; Page 1268	 (c) Describe the pathophysiology of cerebral amyloid angiopathy? (Bonus question) 	There is deposition of amyloidogenic peptides in the walls of medium- and small-calibre meningeal and cortical vessels. This deposition can result in weakening of the vessel wall and risk of haemorrhage	

ACEM PRIMARY VIVA D Thursday Morning

Candidate Number:

TOPIC		QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Asthma	a)	What is the pathological definition of asthma	a) Disorder of the conducting airways usually caused by an immunological reaction, marked by episodic bronchoconstriction due to airway sensitivity to a variety of stimuli, inflammation of the bronchial walls, and increased mucus secretion.	Bold to pass
Subject: Path LOA: 1	b)	Name the main inflammatory cells involved	b) A wide range of inflammatory cells are involved – (lymphocytes, eosinophils, mast cells, macrophages, neutrophils)	Name 2
	c)	How is asthma categorized pathologically?	 c) Types of asthma: Atopic – Most common. IgE (type 1) hypersensitivity reaction – T_H2 mediated. It is characterised by an immediate (bronchoconstriction) and late-phase (inflammation) reactions. TH2 cytokines, IL-4, IL-5 and IL-13 are important mediators (IL-17 & IL-9 in some). Non-Atopic – No evidence of allergen sensitization (& negative skin test). Family history is rare. Drug induced (eg aspirin) Occupational (eg epoxy fumes) 	Must list at least 2 types including atopic and trigger mechanism (Robbins, 9 th ed. 679-682)
	d)	Name some common triggers	 d) Triggers: Atopic Triggered by environmental factors (dust, pollens, food, etc.) in synergy with other pro-inflammatory cofactors such as respiratory viral infections. Positive family history and skin test for allergens. Non-Atopic (Triggers are less clear) Viral respiratory infections (rhinovirus), parainfluenza, RSV) Inhaled air pollutants –smoking, sulfur dioxide, ozone, nitrogen dioxide Exercise induced Exposure to cold 	2 triggers

Question 2 Airway resistance	a) Describe factors affecting airway resistance	• In laminar flow, resistance is proportional to the length of the tube and viscosity , and inversely proportional to fourth power of the radius of the tube. (Poiseuille's Law : R = 8 x Length x Viscosity/n x radius to 4 th power)	Must understand Poiseuille's law (bolded)
Subject : Phys LOA: 1	PROMPT : What is Poiseulle's law?	 Turbulent flow is most likely to occur at high Reynolds numbers, that is, when inertial forces dominate over viscous forces. (Reynolds No. = density x Diameter x Velocity /Viscosity) Highest in the medium-sized bronchi; low in the very small airways Airway resistance decreases as lung volume rises because the airways are then pulled open by radial traction Bronchial smooth muscle is controlled by the autonomic nervous system; stimulation of β-adrenergic receptors causes bronchodilation. Reduced alveolar PCO2 causes increased resistance. 	List at least 2 other factors. (West, 9 th ed. 108 119)
	BONUS : Define dynamic compression of airways and its effects on flow	Intrapleural pressure > alveolar pressure causing airway compression. Dynamic compression of airways limits airflow during forced expiration.	Concept
Stem: Moving to) Pharmacology. He requires intuba	tion. Ketamine is used as the induction agent.	
Question 3 Ketamine	a) What is the mechanism of action of ketamine?	• Ketamine mechanism of action is complex, but the major effect is probably produced through the inhibition of the NMDA (N-methyl- D aspartate) receptor complex	Bold
Subject: Pharm		 blockade of the membrane effects of the excitatory neurotransmitter glutamic acid at the NMDA (N-methyl- D aspartate) receptor complex 	
LOA: 1	b) Besides the anaesthetic effect what are the other indications of ketamine?	 Analgesia, Bronchodilator effect in asthma, Acute behavioural disturbance, Procedural sedation 	2 to pass
	c) In what conditions might you avoid using ketamine?	• Allergy, RICP, RIOP, Recent or current URTI, Shock	at least one to pass (excluding allergy)
	BONUS: What are the organ system effects of ketamine?	 Organ system effects CNS - Cerebral vasodilation and increase blood flow CVS - Increase in BP,HR,COP (centrally mediated sympathetic stimulation) Resp - Relaxation of bronchial smooth muscle Other - Increase salivation (secretion), lacrimation, nystagmus, myoclonus 	

Question 4 CXR	Describe his CXR.	AP film. Large/complete right pneumothorax with significant midline shift to left. ETT shifted to left but in correct place above carina. Left lung mid/lower zone and costophrenic angle obscured by left shifted heart with possible collapse. All suggest	Bold
Subject: CBB		pneumothorax under radiological tension. Cardiac monitoring leads noted.	
Stem: Moving t	o Anatomy. You insert a second ir	ntravenous (IV) cannula into his right cubital fossa.	
Question 5 Cubital fossa	a) Describe the boundaries of the cubital fossa (NO IMAGE)	 Superiorly - imaginary line between epicondyles of humerus Medially - lateral border pronator teres 	3/5 correctly described
(Mc Minns, 7 th		Laterally - medial border brachioradialis	
Ed Page 151)		Floor - brachialis (and supinator)	
Cubicate Arest		Roof - deep fascia reinforced by bicipital aponeurosis, subcutaneous tissue and skin	
Subject: Anat	b) In this photo identify the	Rediel nemie superficial terminal branch (16) Disens (tenden (2) Brachiel extern (4)	Bold
LOA: 1	contents of the cubital fossa	Radial nerve – superficial terminal branch (16), Biceps/tendon (3), Brachial artery (4) dividing into Radial artery (13), and Ulnar artery (17), Median Nerve (12), Brachialis (5)	
	c) Describe the superficial lymphatics of the upper limb	 Originate from lymphatic plexuses in hand and ascend mostly with superficial cephalic and basilic veins 	Bold
		 Some accompanying the basilic veins enter the cubital LNs 	
		Efferent vessels from here drain to axillary LNs	
		 Lymphatics accompanying the cephalic veins enter the axillary LNs with some entering deltopectoral LNs earlier 	

Candidate Number:

QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
a) What is the definition of cardiomyopathy?	 Heterogenous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually (but not invariably) exhibit inappropriate ventricular hypertrophy or dilation 	Bold
	Primary cardiomyopathies can be congenital or acquired	
	• Secondary cardiomyopathies have myocardial involvement as a component of a systemic or multisystem disorder	
b) What are the types of cardiomyopathy? Give a cause of each.PROMPT: Structural changes?	Hypertrophic. 75% genetic cause. Autosomal dominant HCM. Dilated – alcohol, myocarditis, idiopathic, peripartum, genetic Restrictive. Infiltrative: Amyloidosis. Sarcoidosis. Non-infiltrative: Idiopathic, scleroderma	Bold, with one example for each
c) What type of cardiomyopathy is alcoholic cardiomyopathy?	Dilated	
	 a) What is the definition of cardiomyopathy? b) What are the types of cardiomyopathy? Give a cause of each. PROMPT: Structural changes? c) What type of cardiomyopathy is 	 a) What is the definition of cardiomyopathy? Heterogenous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually (but not invariably) exhibit inappropriate ventricular hypertrophy or dilation Primary cardiomyopathies can be congenital or acquired Secondary cardiomyopathies have myocardial involvement as a component of a systemic or multisystem disorder b) What are the types of cardiomyopathy? Give a cause of each. PROMPT: Structural changes? c) What type of cardiomyopathy is Dilated

Stem: Moving onto A	Anatomy. She has upper limb weakness. Here is	a photo of the right brachial plexus.	
Question 2 Brachial plexus (Mc Minns, Pg 142, 7 th Ed)	a) Identify the components of the brachial plexus	Axillary nerve (1), Lateral cord (6), Lat root median n (8), Medial cord (12), Med cut n of arm (13), Medial cut n of forearm (14), Medial root median n (16), Musculocutaneous (18), Median n (17), Posterior cord (20), Ulnar n (26)	Requires 6 in total
Subject: Anat	b) What are the nerve roots that make up the posterior cord of the Brachial Plexus?	C5,6,7,8 and T1	Bold to pass
LOA: 1	c) What are the terminal branches of the posterior cord and what do they supply?	 Axillary nerve (C5, 6) Joint - glenohumeral (shoulder) Muscles - deltoid and teres minor Skin over inferior aspect of deltoid Radial nerve (C5-T1) All muscles in the posterior compartment of arm and forearm Skin over postero, inferolateral arm, posterior forearm and dorsum of hand lat to ring finger Other branches are Upper scapular n C5 supplies subscapularis Lower subscapular n C6. Supplies inferior part of subscapularis and teres major muscle Thoracodorsal n C6,7,8 supplying Lat dorsi 	Both nerves and one example of supply for each
Stem: She has sustai	ned a laceration to her arm. This is the clinical b	building block.	
Question 3 Clinical image Subject: CBB	Describe this photo.	 Laceration on posterior (dorsal) aspect of right forearm extending to the medial (ulnar) aspect Length – any reasonable estimation accepted Depth – extends through subcutaneous fat into muscle No evidence of active bleeding 	Bold to pass

Question 4	a) Please draw a nerve action potential	It depends on the change in conductance of Na and K ions.	Bold to pass
Nerve action potential and excitation Subject: Phys: LOA: 1	and indicate the sequence of events that occur	 When a depolarising stimulus occurs, the voltage- gated Na channels become active, Na enters the cell When the threshold potential is reached the voltage- gated Na channels overwhelms the K channels. Entry of Na causes opening of more voltage-gated Na channels and further depolarisation (positive feedback loop) resulting in the upstroke of AP The membrane potential moves close to the equilibrium potential for Na (+60mV). The voltage gated Na channels then enter an inactivated state for a few milliseconds before returning to the resting state Reversal of membrane potential limiting further Na influx and opening of voltage-gated K channels results in repolarisation and end of AP Slow return of K channels results in hyperpolarization Returns to resting membrane potential 	Image: State
Stem: Moving onto	Pharmacology.		
Question 5 Ethanol Subject: Pharm LOA: 2	a) What are the pharmacodynamic effects of ethanol?	CNS: sedation, disinhibition, impaired judgement, impaired motor skills, ataxia, slurred speech -> coma, respiratory depression CVS: depressed contractility Smooth Muscle: vasodilator (-> hypothermia)	3 x CNS plus 1 other
	b) What are the pharmacokinetics of ethanol?	Absorption – rapid from GI tract peak levels within 30 min Distribution – rapid Vd ~TBW 0.5-0.7L/kg Metabolism - liver – ZERO order and mainly by alcohol dehydrogenase Excreted - lungs, urine	Bold plus 2
	c) What does zero –order kinetics mean?	That independent of the drug concentration the elimination of the drug occurs at a constant state	Understand concept

Stem: A 50-year-old	man who is on dialysis is being treated for right	hip osteomyelitis. We will start with Pathology.	_
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Osteomyelitis Subject: Path LOA: 1	a) Describe the pathogenesis of acute osteomyelitisb) What organisms cause osteomyelitis?	 Haematogenous spread of organism to bone Extension from a contiguous site Local bone injury and direct organism entry Staphylococcus aureus >80% of pyogenic ones Others: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa from IVDU and GU; Haemophilus influenzae, Group B streptococcus – in neonates 	2/3 Bold + 1 other organism to pass
	c) What pathological changes occur to the bone?	 Acute inflammation - neutrophilic Abscess – sub-periosteal / surrounding soft tissue Necrosis – dead bone - sequestrum Involucrum (fibrous tissue and reactive bone deposition) forms around devitalized infected bone 	Bold to pass
	d) What are the possible sequelae of osteomyelitis?	 Resolution Chronic – up to 25% Acute flare-ups Pathological fracture Endocarditis Severe sepsis SCC in draining sinus tracts Sarcoma in infected bone 	Bold + 1 complication of chronic osteomyelitis to pass

Question 2 Hip (x-ray)	a) Identify the proximal landmarks of the femur on this x-ray	Head, neck, greater & lesser trochanters, shaft	Bold to pass
Subject: Anatomy LOA: 1	b) Describe the blood supply to the head of the femur	 Medial and lateral circumflex femoral arteries Usually branches of deep artery of thigh (profunda femoris) These branch to form retinacular arteries (medial > lateral), feed under posterior unattached capsule (medial) or through iliofemoral ligament (lateral) Distal to proximal Artery to head of femur – branch of obturator artery (less important) 	Bold to pass
	c) What does the femoral nerve supply?	 Anterior thigh muscles (quadriceps) Pectineus, Sartorius, iliacus Articular branches to hip and knee joints Cutaneous branches to anteromedial thigh Terminal cutaneous branch is saphenous nerve to anteromedial knee, leg, foot 	Bold plus one sensory
-	Pharmacology. He is being treated with Vancomy		
Question 3 Vancomycin Subject: Pharm	a) What is the mechanism of action of vancomycin?	Inhibits cell wall synthesis by binding to peptidoglycan pentopeptide. This inhibits transglycosylase preventing crosslinking and weakening cell wall/membrane Bactericidal	Bold to pass
LOA: 2	b) What are the target organisms for vancomycin?	Gram +ve (Staph incl MRSA, Enterococci), G +ve anaerobes (C. difficile)	Any 2 to pass
	c) What clinical condition requires dose adjustment?	Renal impairment, Morbid obesity	Either
Stem: A 12 lead FCG	i was performed. This is the clinical building block	1 K.	
Question 4 ECG (Hyperkalaemia)	Describe and interpret this ECG	Sinus rhythm / sinus tachycardia (rate 100-110 bpm), normal axis, PR normal, normal QRS width, peaked T waves (esp V ₂ -V ₆ and inferior leads) Poor R wave progression	Structured approach or recognition of abnormalities
Subject: CCB		Suggestive of hyperkalaemia	

Question 5	a) How does the kidney handle potassium?	Filtered in glomerulus (~600meq/24hrs)	Bold to pass (need to have
Renal handling of K+		Reabsorbed in proximal tubules & thick ascending	process and site)
	PROMPT : What happens to potassium in	limb of loop of Henle (~560meq/24hrs : >90%)	
Subject: Phys	different parts of the nephron?	active transport via Na-K-2Cl co-transporter	
		Secreted / excreted by distal tubules/collecting ducts	
LOA:1		(~502meq/24hrs)	
		 amount proportionate to flow rate through distal tubules (rapid flow rates reduces intratubular K⁺ concentration, thus facilitating secretion) under influence of aldosterone (induces K⁺ secretion) 	
	b) What other major ions are involved in potassium transport in the nephron?	Na⁺, H⁺	Both
	c) How do hydrogen ions influence potassium transport in the nephron?	Coupled to H ⁺ secretion [if H+ secretion increased, then K ⁺ excretion decreased as K+ is reabsorbed in exchange for H ⁺ (H,K-ATPase) in collecting duct cells]	Concept

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE	NOTES
Question 1	(a) Describe the rash.	Red, maculopapular rash with areas of coalescence.	Concept
Rash (picture) Subject CBB	(b) What are the possible causes for her rash?	Non-vesicular, non-pustular, some pigmented lesions. (a)Infective: viral exanthem, measles, rubella, erysipelas, scalded skin syndrome, TSS (b)Allergic dermatitis, atopic dermatitis	2 infective plus one other
		(c)Drug reaction	
Stem: Moving onto Pa	athology. You suspect Toxic Shock Syndroi		
Question 2	(a) Describe the virulence factors of Staph aureus	Surface proteins: involved in adherence- (express receptors for fibrinogen (and others) to bind to host	Toxins with example plus 1 other bold.
Staph Aureus Subject: Pathology	Prompt: How does Staph aureus cause disease	endothelial cells, and artificial materials), and evade host immune response Secreted enzymes: degrade proteins (promoting invasion and destruction) e.g. lipase degrades skin lipid associated with ability to produce abscess	
LOA: 1		 Secreted toxins: that damage host cells: Alpha toxin- membrane depolarisation/ damage Beta toxin- sphingomyelinase Exfoliative A and B toxin Gamma toxin and leukocidin Superantigens –TSS and food poisoning 	
	(b) What are the risk factors for Toxic Shock Syndrome?	Use of tampons, Post op wound infection, Post partum, Nasal Packs, Staph or strep skin infection	Any 2
	(c) What are the clinical features of Toxic Shock Syndrome?	Hypotension (shock), acute renal failure, coagulopathy, respiratory failure, soft tissue necrosis at site of infection, a generalized erythematous rash,	Any 3

Question 3	(a) Describe the pharmacokinetics of	Absorption: Well absorbed from the GIT.	Bold to pass
	oral paracetamol.	Peak plasma levels 30-60 minutes.	
Paracetamol		It is slightly protein bound.	
		Distribution: T ½ of 2-3 hours. This is increased in liver	
Subject: Pharm	Prompt: How is it metabolised?	disease to >6 hours	
•		Metabolism: Hepatic: >95% undergoes glucuronidation	
LOA: 1		and sulfation.	
		5% undergoes metabolism via CYP 450 mechanisms	
		(Phase 1 reaction – hydroxylation) to form NAPQI. NAPQI	
		is toxic, but usually detoxified by glutathione.	
	(b) What is the toxic dose of paracetamol?	150 - 200mg/kg in adult	
		In ODs \rightarrow glucuronidation and sulfation pathways are	
	(c) How does paracetamol cause	saturated and paracetamol is broken down by a Phase 1	Concept to pass
	toxicity?	reaction.	
		More NAPQI is formed $ ightarrow$ this consumes glutathione	
		(GSH). Once GSH is depleted, NAPQI then becomes	
		hepatotoxic.	
Stem: Moving onto	Anatomy. A pelvic examination is performe	d.	•
Question 4	(a) Using this model, identify the	Pubic symphysis, bladder, vagina, uterus, rectum,	5 to pass
	major anatomical structures.	sacrum, external anal sphincter, ovary, fallopian tube,	
Pelvis (Female Model MS1)		Broad ligaments, internal and external iliac vessels	
Subject: Anatomy	(b) Describe the course of the iliac	Common iliac origin from aorta L3	Bold to pass
,, ,	arteries.	Follows medial border of psoas to pelvic brim	
		Divides at level of L5-S1	
LOA: 1		Internal iliac artery enters pelvis	
		External iliac artery follows iliopsoas ends at the inguinal	
		ligament and becomes femoral artery at mid inguinal point	
	(c) What is the blood supply of the	Litering artery from the anterior division of the internal	
		Uterine artery from the anterior division of the internal	Bold
	uterus?	iliac artery Crosses above the unstar on its course to the	
	uterus? Prompt: What is the origin of the	iliac artery . Crosses above the ureter on its course to the uterus. Commonly anastomoses with the vaginal and	

0	nto Physiology. She becomes hypotensive.	· · · · · ·	
Question 5	(a) Describe the receptors that	Baroreceptors (carotid sinus, aortic arch, atria)	Receptors plus
	respond to the fall in blood pressure.	Reduced stretch -increased sympathetic stimulation -	concepts
Shock		tachycardia and generalized vasoconstriction (sparing of	
		brain and heart).	
Subject:	Prompt: How do these receptors	With increased shock, paradoxical bradycardia	
Physiology	respond to this change?	(unmasking of vagal depressor reflex) then tachycardia	
		again with further shock.	
LOA: 1		Chemoreceptors (carotid body, aorta)	
		Stimulated by reduced blood flow and acidosis.	
		Stimulates vasomotor areas in medulla with increase	
		vasoconstriction.	
	(b) Describe the non-cardiovascular	Renal response : Efferent arterioles constricted more	Renal plus 2
	compensatory responses to shock.	than afferent. Renal plasma flow decreased more than	
		GFR - filtration fraction (GFR/plasma flow).	
	Prompt: How do the kidneys compensate	Na+ retention: Retained nitrogenous products of	
	for shock?	metabolism (uremia)	
		Angiotensin II: plasma renin causing AG II, AG II	
		maintains BP and causes stimulation thirst center in	
		brain.	
		Vasopressin: Retain Na+ and H2O.	
		Aldosterone: Stimulated by circulating AG II and ACTH.	
		Helps retain Na+ and H2O.	
		Adrenal stimulation: Adrenal medulla secretion	
		catecholamines	
		Increased circulation NA: Increased discharge	
		sympathetic NA nerves	

ACEM PRIMARY VIVA D Thursday Afternoon

Candidate Number:

Stem: A 52 year old	Stem: A 52 year old man presents following a fall. He is cachectic and has multiple bruises. Liver function tests are performed.				
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES		
Question 1	(a) Describe the abnormalities on this investigation?	Elevated bilirubin, ALP, GGT, transaminases Consistent with mixed picture	Bold to pass		
Blood tests (LFTs)		(Normal lipase, normal albumin and coags – suggests normal synthetic function)			
Subject: CBB					
	(b) What could be causing these abnormalities?	 Biliary obstruction - intraluminal (stone), luminal (malignancy/stricture), extraluminal (malignancy); medications, autoimmune parenchymal liver – alcohol, ischemia, infection, toxins 	3 causes		

Stem: Moving on	n to Physiology		
Question 2	(a) How is bilirubin produced in the	By breakdown of haemoglobin (heme is	Concept to pass
	body?	converted to biliverdin and then on to bilirubin)	
Bilirubin			
	(b) How is bilirubin metabolised?	 Bound to albumin in the circulation 	Bold to pass
Subject:		• Dissociates in the liver and free bilirubin enters	
Physiology		liver cells (Liver: Organic Anion Transport	
_		Polypeptide- OATP)	
LOA: 1		Conjugation in liver cells (UDP glucuronyl	
		transferase located in smooth endoplasmic	
		reticulum acts on the bilirubin to form bilirubin-	
		diglucuronide (BiliG) which is H2O soluble)	
		• BiliG is actively transported to biliary canaliculi,	
		bile ducts and then to intestine. (small amounts	
		of BiliG and free Bilirubin leak into the	
		circulation.)	
		• Intestinal phase: Intestinal bacteria acts on the BiliG to form unconjugated bilirubin and	
		urobilinogen. These are excreted via the gut.	
		• Enterohepatic circulation: unconjugated	
		Bilirubin and urobilinogen can re-enter the	
		portal circulation.	
		• Urobilinogen may enter the general circulation	
		to be excreted by the kidneys.	
	c) Describe the composition of bile.	• 97% water	3 to pass
		 bile pigments (conjugated bilirubin + biliverdin) 	
		 bile salts (cholic acid, chenodeoxycholic acid, 	
		deoxycholic acid, lithocholic acid)	
		inorganic salts	
		others: cholesterol, fatty acids, lecithin, fat	

Stem: Moving on to	Anatomy. He has a tender right hand and v	vrist.	
Question 3 Hand Model Subject: Anatomy LOA: 1	a) On this model identify ligaments of the wrist. <i>Prompt: What are the joints in the</i> <i>wrist?</i>	Ulnar collateral ligament (32), Interosseous membrane (21), radial collateral ligament (36), dorsal radiocarpal ligament (33), dorsal radioulnar ligament (34), intercarpal ligaments (37), Palmar carpometacarpal ligaments (1), palmar radiocarpal ligament (5), palmar radioulnar ligament (7)	4 to pass
	b) What movements occur at the wrist and which muscles produce them?	Flexion: FCR, FCU plus thumb/finger flexors, PL, APL Extension: ECRL, ECRB, ECU plus thumb/finger extensors Abduction: APL, FCR, ECRL, ECRB (limited to 15 degrees due to radial styloid) Adduction: ECU, FCU Combined movements = circumduction	4 movements with one muscle for each to pass
Stem: Moving onto	Pathology.	•	
Question 4	a) What are the causes of jaundice?	Predom unconjugated	Bold plus 1 cause each
Jaundice Subject: Pathology LOA: 1	Prompt: are there different types of jaundice? (hyperbilirubinaemia)	 ↑ production of bili: haemolysis, resorption of haemorrhage, thalassaemia ↓ hepatic intake: drug interference with membrane carrier systems, Gilbert sy impaired conj: phys J of newborn, breast milk J, Crigler-Najjar sy, Gilbert sy, hepatitis (viral, drugs, auto-immune, cirrhosis) Predom conjugated Impaired bile flow (cholangiopathy, biliary stricture, malignancy, choledocholithiasis) Deficiency canalicular membrane transporters (Dubin Johnson sy, Rotor sy) 	
	b) Apart from jaundice, what are the clinical features of liver failure?	Icterus, pruritis, fetor hepaticus, palmar erythema, spider angiomata, hypogonadism, gynaecomastia, encephalopathy(asterixis), coagulopathy, hepatorenal syndrome, hepatopulmonary syndrome, portal HT(varices, ascites, caput medusae)	5 features.

Stem: Moving on to	Stem: Moving on to Pharmacology. Ethanol abuse is the most likely cause of his symptoms.				
Question 5	a) Describe the pharmacokinetics of	Absorption: rapid from GIT (peak level in 30mins)	Bold to pass		
	ethanol.	Distribution: rapid. Vol of Distribution: TBW (0.5-			
Ethanol		0.7 L/kg)			
	Prompt: How is it metabolised?	Metabolism: Predominantly liver. Mainly by			
Subject:		alcohol dehydrogenase and less by microsomal			
Pharmacology		ethanol oxidising system (MEOS). Zero-order.			
		Excretion: Lungs, urine (small amounts)			
LOA: 1	b) What does zero-order kinetics mean?	Elimination occurs at a constant rate independent of drug concentration	concept		
Katzung 13 th					
edition pp 384-386	 c) What other drugs have zero order kinetic metabolism. 	Phenytoin, theophylline, warfarin, salicylate, heparin, paracetamol	one		

ACEM PRIMARY VIVA D Friday Morning

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE	NOTES
Question 1	(a) What is the definition of shock?	Reduction in cardiac output or the effective	Bold to pass
		circulating blood volume; the result is	
Shock		hypotension followed by impaired tissue	
		perfusion and cellular hypoxia.	
Subject: Path			
	(b) What are the major categories of	Cardiogenic e.g. AMI, cardiotoxins, arrhythmia	3 categories with 1 example of each
LOA: 1	shock? Please give examples.	Hypovolaemic e.g. haemorrhage, burns, GI losses	
		Septic/ systemic inflammation e.g. sepsis,	
Robbins 9 th edition		pancreatitis, trauma (independent of	
P131-134		haemorrhage)	
		Distributive e.g. anaphylactic, adrenal crisis,	
		Neurogenic e.g. spinal injury, spinal anaesthetic	
		Obstructive e.g. tension pneumothorax, cardiac	
		tamponade, PE	

Question 2	(a) Describe the anatomy of the	Oblique, inferomedial passage, 4cm long, superior	Locations of deep and superficial rings
	inguinal canal	to medial ½ of inguinal ligament. Deep (int) ring superior to middle of ing lig, lateral to inf	Basic concepts of walls, roof and floor
Inguinal canal	Prompt – what are the boundaries?	epigastric a. Superficial (external) ring superolateral to pubic tubercle (split in external	
Subject: Anat		oblique aponeurosis) Ant wall – ext oblique aponeurosis	
LOA: 1		Post wall - transversalis fascia (+conjoint tendon)	
Moore 7 th edition P202-213 inc. table		Roof - transversalis fascia, internal oblique and transversus abdominis	
B2.1		Floor – inguinal ligament	
	(b) What is the difference between a direct and an indirect inguinal hernia?	Direct (acquired) Weakness of anterior abdominal wall, traverses medial 1/3 of canal, exits superficial ring lateral to cord, rarely enters scrotum Indirect (congenital) Traverses entire canal within patent processus vaginalis, goes from internal to external ring, inside the cord, commonly into scrotum/labium majus	Basic concepts of direct and indirect hernias and their different directions
	(c) What underlying structures may be involved in this lump?	Small bowel, large bowel, mesentery / omentum, other abdominal viscera(bladder, ovaries, appendix)	Bold plus 1
L Stem: Abdominal X-r	ays are performed.		
Question 3	a) Please describe these images	Multiple centrally distributed distended bowel	Bold concepts
Erect and Supine		loops Multiple air/fluid levels	
AXR		Hernia not seen	
Subject: CBB	b) What is the diagnosis?	Bowel obstruction (level not required)	Diagnosis

Stem: Moving on to	Physiology. He has reduced urinary output.		
Question 4	(a) What is the normal renal blood flow?	1.2 – 1.3 l/min (~25% of C.O.)	Either bold
Renal blood flow			
	(b) Describe the factors which	Perfusion pressure (systemic MAP)	3 of 4 bold
Subject: Phys	determine renal blood flow.	Renal arterial effects (local constriction from NA	
		and Ang II, dilation from ACh, PGs, dopamine)	
LOA: 1		Renal nerves (symp/constrict/decr RBF)	
		Autoregulation (myogenic, NO, Ang II),	
		BONUS Regional differences cortex to medulla	
	(c) How does hypotension activate	Hypotension leads to reduced perfusion pressure	Bold concept
	the renin-angiotensin system?	of the afferent glomerular arteriole, stimulating	
	Prompt: what stimulates renin release?	release of renin by the JG cells	
Stem: Moving on to	Pharmacology. A central venous line is inse		
Question 5	(a) What is the maximum safe dose	Plain – 3mg/kg (to maximum 300mg)	(3-5mg/kg)
	of lignocaine for local	With Adrenaline - 5mg/kg (to max 500mg)	(5-7mg/kg)
Local Anaesthetics	anaesthesia?		
	(b) What factors affect absorption of	Dose, site of injection, drug-tissue binding, tissue	3/5 factors
Subject: Pharm	lignocaine after local infiltration?	blood flow, vasoconstrictors	
-	_		
LOA: 1	(c) What are the toxic effects of	CNS: EARLY/MILD: circumoral /tongue numbness,	CNS + 2 examples
	lignocaine?	metallic taste, paraesthesia, sedation	
		MODERATE: nystagmus, muscle twitching, N&V,	
		tinnitus SEVERE seizures, sedation	
		CVS: cardiovascular collapse, hypotension,	CVS + 2 examples
		bradycardia, rarely, arrhythmia, worsen CCF or	
		conduction blocks	
		GIT: anorexia N&V (through CNS effects)	
		Haem: methaemoglobinaemia	
		Allergy: rare with amides	

Candidate Number:

Stem: A 50-year-o	ld woman presents in an agita	ted state after self-harming. Diazepam is prescribed. We will start with Ph	armacology.
TOPIC	QUESTIONS	KNOWLEDGE	NOTES
Question 1 Benzodiazepines	a) What is the mechanism of action of benzodiazepines?	Binds to molecular components of GABA_A receptor in neuronal membranes in CNS (γ subunit of the pentamer). This receptor is a chloride ion channel. The BDs do not substitute for GABA (major inhibitory neurotransmitter)	Bold plus concept
Subject: Pharmacology LOA: 1	Prompt: What receptor is involved?	but appear to enhance GABA's effects without directly activating GABA _A receptors or opening the chloride channels. This causes an increase in the frequency of channel-opening events.	
Katzung 13 th , 374-7	b) What are the organ level effects of Diazepam?	 Sedation – calming effect, anxiolysis; low dose effect- psychomotor & cognitive depression, amnesia Hypnosis; Anaesthesia – at higher doses; Anticonvulsant effect; Muscle relaxation Respiratory depression & Cardiovascular depression – at higher doses and when hypovolaemic/CCF/chronic heart dis. 	3 of bold to pass
	c) What are the clinical uses of Diazepam in the ED?	Anticonvulsant, sedation of agitated patient, Etoh/benzo withdrawal, various toxidromes	2 to pass (can take into account part b answer)
Stem: She has inju	red her hand. This is the clinica	al building block.	
Question 2 Photo of hand	a) Please describe the findings on this photo.	Deep horizontal laceration across distal palmar surface. Exposed fat, tendon, muscle and bone (cartilage). Reduced flexion of 2 nd , third, fourth digits, pallor.	Reasonable description
Subject: CBB Moore's 7 th edition page 775, figure 6.77	 b) What clinical examination findings would you seek to assess the extent of her hand injury? 	Digital nerve – loss of distal sensation Digital artery – bleeding, loss of distal perfusion FDP – unable to flex DIP FDS – unable to flex PIP	Nerve plus artery plus tendon

Stem: Moving on t	o Anatomy.			
		Flexor tendons (FDP, FDS), MCP joint and head, common palmar digital nerves and arteries	Correctly identify 3 to pass	
Subject: Anatomy LOA: 1 Moore's 7 th edition p. 785, Table 6.16, Fig 6.86	 b) Describe the sensory and motor nerve supply of the hand. Prompt motor and sensory. 	 <u>Ulnar nerve</u> - <i>Motor functions</i>: Innervates the majority of the intrinsic muscles of the hand (hypothenar, interosseous, adductor pollicis, deep head of flexor pollicis brevis, ulnar lumbricals for digits 4 & 5) <i>Sensory functions</i>: Innervates skin of 5th digit and ulnar half of fourth digit and adjacent hand. <u>Median nerve</u> - <i>Motor functions</i>: Supplies innervation to the thenar muscles (except adductor pollicis and deep head of flexor pollicis brevis) and radial two lumbricals in the hand. <i>Sensory functions</i>: Provides sensation to skin of palmar and distal dorsal aspects of radial three and a half digits. <u>Radial nerve</u> – Sensory functions: Dorsum of the radial side of the hand excluding distal fingers. 	Must mention median and ulnar nerves with basic concept of sensory distribution and the majority of the motor supply.	
Stem: Moving on t	o Pathology. Her wound is oo	zing.		
Question 4 Haemostasis Subject:	a) Describe the process of primary haemostasis. Prompt: how is the primary haemostatic plug	 Primary haemostasis = formation of platelet plug Endothelial damage exposes ECM (collagen, vWF) Platelet activation adhere (via Gp1b to vWF) shape change (flat to round) secretion (ADP, Tx A2, Ca) + negative charge phospholipid) 	Platelets plus 3of 6	
Pathology LOA: 1 Robbins – Pg. 119; Chapter 4: Haemodynamic disorders	b) How is the coagulation cascade activated following injury? Prompt: what happens after it is activated?	 Secretion (ADP, 1X A2, Ca) + negative charge phospholipid) Platelet aggregation (platelet Gp11b-111a receptors via fibrinogen) Vascular damage and exposure of tissue factor converts factor VII to VIIa. This in turn causes a series of amplifying enzymatic reactions that leads to the deposition of a fibrin clot (secondary haemostasis). (Factor X is converted to factor Xa, which in turn converts prothrombin (factor II) to thrombin. Which converts fibrinogen to fibrin (fibrin network)) 	Bold plus concept	
Chapter 12: The Heart; 9th Edition;	c) BONUS: What does prothrombin time measure?	Assesses the extrinsic and common coagulation pathways.	At least one	

Question 5	 (a) How does the body regulate Plasma 	1,25 – dihydrocholecalciferol (DHCC) (from Vit D) increases Ca absorption from GIT and kidneys.	Mention Vit D and PTH PLUS correct direction o
Calcium haemostasis	Calcium?	PTH mobilises Ca from bone, increases Ca reabsorption in kidneys, increases 1,25 DHCC formation in kidneys.	effect on Ca to pass
Subject: Physiology		Calcitonin (from thyroid) inhibits bone resorption, increases Ca excretion in urine.	
LOA: 2 Ganong. 25 th			
edition. Chapter 21	(b) How is the synthesis of 1,25 –	Low Ca increases PTH which stimulates 1alpha-hydroxylase and	b. concept in bold to pas
Hormonal control of Calcium and	dihydrocholecalciferol (DHCC) (Vit D)	increases 1,25 DHCC formation Low PO4 directly stimulates 1alpha-hydroxylase	1 Plasma calcium
phosphate metabolism and	regulated?	High Ca /high PO4 inhibits 1,25-DHCC (increases inactive 24,25-DHCC instead).	Parathynoid glonds 1Parathynoid hormone secretion
the physiology of bone			1 Plasma parathyroid hormone
			Kidneys † Calcium †1,25-(OH) ₂ D ₃ reabsorption formation
			1 Urinary excretion of calcium 1 Plasma 125-(OH) ₂ D ₃ 1 Release of calcium into plasma Intestine 1 Calcium absorption 1 Calcium absorption

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 CXR – lung consolidation Clinical Building Block	What abnormalities are present?	Multiple (at least 3) left sided (patchy) opacities the largest of which appears to be pleurally based. Indistinct left heart border. Slight rightward tracheal deviation (?rotation). Relatively normal appearing right lung fields.	Bold required
	What is your differential diagnosis	Pneumonia, PE, Less likely in this scenario; contusion, pulmonary haemorrhage, heart failure, tumours	Infective plus one other
Stem: Moving onto	Anatomy		
Question 2 Lobes of the lung Mediastinum and	a) What structures make up the mediastinal contours?	Right: R Brachiocephalic v, SVC, R pulmonary trunk , R atrium	Bold required Plus one other
cardiac borders (CXR)	(you can point to the CXR if you want)	Left: Aorta, Pulm trunk, Latrium, L Ventricle	
Subject: Anat LOA: 1	 b) Which lobes of the lung lie adjacent to the right and left cardio-mediastinum? Prompt : Which part of the lung forms the right heart border? etc 	Right upper mediastinum - right superior lobe Right heart border - right middle lobe Left upper mediastinum - left superior lobe Left heart border - left superior lobe (lingula segment)	Bold required

	to Pathology. A pulmonary embolus is diagno What are the clinical features of PE?	(60-80% are silent)	5 to pass
Question 3 Pulmonary Embolus Subject: Path LOA: 1	what are the clinical features of PE?	Usually present with respiratory compromise – SOB hypoxia, dyspnoea, tachypnoea shock , collapse, hypotension Right heart failure, pleural rub/pleuritic pain, fever, cough, haemoptysis Death	
	Name some risk factors for Pulmonary embolism?	Primary – factor V Leiden, Antiphospholipid syndrome, Prothrombin mutations Secondary- obesity, OCP, cancer, immobilisation, long haul flights , preg , indwelling CVL, hip fractures,	1 primary and 3 secondary factors
	What factors determine the severity of the pathophysiological response to pulmonary embolism?	 Extent of Pulmonary artery blood flow obstructed Size of the vessel occluded Number of emboli 	Bold to pass Accept 2 of the others also as a pass
	Prompt: features of the emboli	 4. Overall CVS status 5. Release of vasoactive factors ie. (thromboxane A2) 	
Stem: Moving on	to Physiology. The patient is hypoxic		
Question 4 Ventilation- perfusion	a) What are the physiological causes of hypoxaemia?	Hypoventilation, diffusion, shunt, ventilation- perfusion inequality.	Need 3 to pass
relationships Subject: Phys LOA: 1	b) How does ventilation-perfusion inequality result in hypoxaemia?	Lung units with low V/Q ratio have effluent blood with low pO2 (close to mixed venous). Units with high V/Q ratio have relatively high PO2 but because of non-linear O2 dissociation curve add little to O2 concentration (compared to the decrement caused by the low V/Q areas). Overall mixed return has lower O2.	Bold + demonstrate understanding of concepts
	 c) How can ventilation-perfusion inequality be measured? (Prompt: is there a formula used to quantify V/Q inequality?) 	Using the alveolar-arterial PO2 difference (the A- a gradient) – subtracting the (measured) arterial PO2 from the "ideal" alveolar PO2 as given by the alveolar gas equation.	Bold + understanding of concepts

		PAO2 = PiO2 - PaCO2/0.8	
		Normal is 5-10mmHg (increases with age)	
	Extra Q: Why does the PCO2 remain	The CO2 dissociation curve is linear in the working	
	relatively normal in the setting of	range. An increase in PCO2 stimulates	
	ventilation-perfusion inequality?	chemoreceptors \rightarrow increase ventilation	
Stem: Moving onto	Pharmacology. The patient is commenced c	on oral anticoagulants.	
Question 5 Rivaroxaban – mechanism of	a) Describe the mechanism of action of rivaroxaban.	Inhibits both free and prothrombinase-bound forms of activated factor X.	Inhibits factor Xa
action	b) Describe the pharmacokinetics of	Oral bioavailability >80%	2 things including predominant
Pharmacokinetics Subject: Pharm LOA: 1	rivaroxaban.	Maximal plasma levels 3 hours post-ingestion Small volumes of distribution (<50L) Highly protein bound Elimination renal (predominant) and hepatic (CYP3A4) with steady state half-life 5-14 hours and prolonged with renal impairment.	renal excretion to pass
	c) What clinical advantages does rivaroxaban offer over warfarin?	More rapid onset/offset of action More predictable effect = easier dosing, wider therapeutic index INR monitoring not required Fewer drug and dietary interactions	2 to pass. Better candidates will be able to correlate differing MOA and pharmacokinetics to advantages
	Extra Q: Do the pharmacokinetics of rivaroxaban present any clinical disadvantages relative to warfarin?	Predominant renal excretion means dose must be adjusted in renal failure and not suitable for dialysis patients.	Supplementary question, only use if sufficient time.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Response to fluid bolus Subject: Phys LOA: 1	What are the physiological effects of dehydration?	Water loss lowers ECF and ICF leading to ↓BP, ↑HR, ↑ADH, ↓UO , ↓GFR, ↑Renin/Angiotensin, ↑Thirst aiming to maintain IV volume. In adrenal insufficiency Na is lost not only in urine but also into cells.	Na movement is key. Bold elements.
	Describe the effects of a rapid IV infusion of 1000 ml of Normal Saline. Prompt: what is the cardiovascular effect you would see?	\uparrow Cl and acidosis, \uparrow Baroreceptor firing, Ψ HR, \uparrow BP, increased UO, Ψ Renin/Angiotensin and improved capillary return. (Bainbridge reflex described initial increase HR if slow initially)	Bold plus one more.
	What is an alternative physiological fluid replacement?	Hartmann's (lactated Ringer's) or Plasmalyte.	1 of these.
Stem: Moving onto	Pharmacology, she is given Atropine		
Question 2 Atropine including Pharmacokinetics Subject: Pharm LOA: 1	What is the mechanism of action of atropine?	A competitive, reversible muscarinic ACh receptor antagonist Binds to muscarinic receptors, preventing the release of IP3 (inositol triphosphate), DAG (diacyglycerol) and the inhibition of adenylyl cyclase caused by muscarinic agonists.	Bold to pass
		Anticholinergic agent (equipotent at M ₁ ,M ₂ ,M ₃ Rc)	
	Describe the organ effects of atropine	Eye – mydriasis & cycloplegia CNS – delirium, decrease tremor in Parkinson's disease CVS - tachycardia Resp – bronchodilation & decrease secretions GIT – decrease saliva secretion, decrease gastric acid secretion, decrease mucin production, decrease gastric emptying, decreased gut motility and intestinal transit time increases GUT – relaxes ureteric and bladder wall smooth muscle, urine retention Skin – decreased sweating	Need 3 organ system with an example to pass
	What is atropine used for clinically?	Rx symptomatic bradyarrhythmias / bradycardia Ophthalmology – as a mydriatic & cyloplegic Occas. in paediatric RSI using suxamethonium (not routine any more) esp 2 nd dose Drying of secretions eg in cholinergic nerve agent / OP poisoning or in palliative care Traveller's diarrhoea	Bold plus 1 to pass
	Extra question: Describe the	Route of ad m in: IV, oral, nebulized, topical	

	pharmacokinetics of atropine?	Absorption: well absorbed orally Distribution: wide Vd (including CNS) Half life = 2 hrs Metabolism & Excretion: 40% phase I and phase II metabolism and renally excreted 60% excreted renally unchanged	
	Anatomy. She complains of a painful wris		
Question 3 Carpal bones, stability and movements	Name and identify the carpal bones on this model	Scaphoid, Lunate, triquetrum, pisiform, hamate, capitate, trapezoid, trapezium.	6 to pass. Bold to pass
Subject: Anatomy LOA: 1	What movements occur at the wrist joint (demonstrate them) and which muscles produce them?	Flexion – FCR, FCU + flexors of fingers & thumb, Palmaris longus & AbPL Extension – ECRL or ECRB, ECU and extensors of fingers & thumb Abduction – FCR, ECRL or ECRB, APL Adduction – ECU and FCU (Circumduction)	
Stem: Blood tests w	vere sent on arrival. Here are her coagulat	tion and platelet results.	
Question 4	What is the most likely diagnosis?	Disseminated Intravascular Coagulation	All required.
Coags - DIC Clinical Building Block	Prompt: What are the abnormalities in this set of results?		
(30 sec)	What other coagulation test is likely to be abnormal?	D-Dimer is markedly raised.	
Stem: Moving onto	Pathology. You suspect she has dissemin	ated intravascular coagulation.	
Question 5 DIC Subject: Path	List some common triggers DIC?	Sepsis (bacterial endotoxins and AgAb complexes), major trauma/burns/surgery, certain cancers (AML (promyelocitic), adenoca of lung, colon, stomach, pancreas), obstetric complications (placenta, amniotic fluid, dead fetal tissue)	3 of 4 categories required. Will accept examples.
LOA: 1	How does endothelial injury initiate DIC??	 Exposure of sub endothelial matrix activates plts and the coag cascade TNF causes tissue factor to be expressed from endothelial cells 	3 points required for
(2 min)	Extra question: Draw the extrinsic pathway of the coagulation cascade.	 TNF up-regulates the expression of adhesion molecules on endothelial cells to allow leucocytes to bind and damage endothelial cells. Direct trauma to endothelial cells from AgAb complexes, temperature extremes, or microorganisms. 	pass

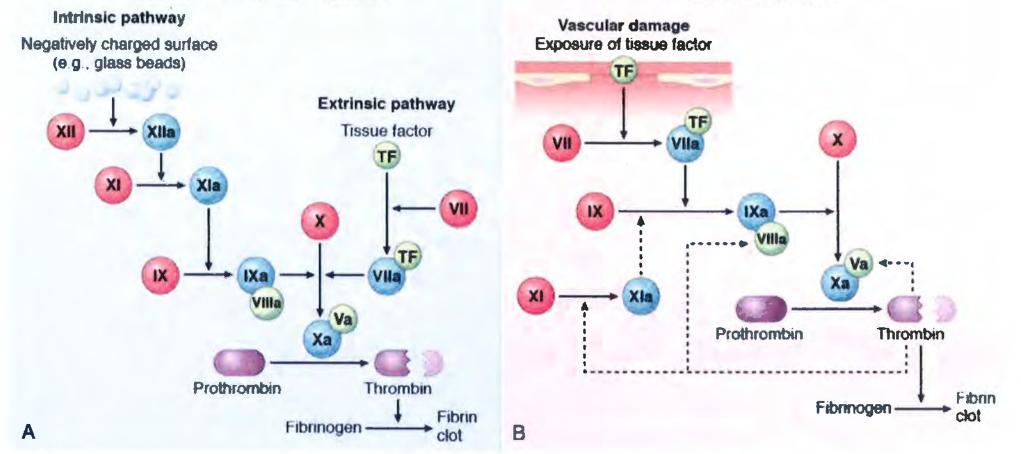


Figure 4-6 The coagulation cascade in the laboratory and in vivo. A, Clotting is initiated in the laboratory by adding phospholipids, calcium, and either a negative charged substance such as glass beads (intrinsic pathway) or a source of tissue factor (extrinsic pathway). B, In vivo, tissue factor is the major initiator of coagulation, which is amplified by feedback loops involving thrombin (dotted lines). The red polypeptides are inactive factors, the dark green polypeptides are active factors, while the light green polypeptides correspond to cofactors.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Here is a photo of the right brachial plexus. 1) Please identify the nerve most likely injured.	Radial nerve (21)	Bold to pass
Brachial Plexus (photo) Subject: Anat LOA: 1	2) Please identify some of the other numbered nerves in the plexus. Prompt: please show us the median and ulnar nerves.	Axiliary nerve (1), Lateral cord (6), lat root median n (8), medial cord (12), medial cut n of arm (13), medial cut n of forearm (14), Medial root of median n (16), Median n (17), Posterior cord (20), Ulnar n (26).	Requires median and ulnar n to pass. 4 in total incl these 2
	3) Apart from wrist extensor weakness, what other functions may be lost with a radial nerve lesion in the axilla?	Finger extension and sensory loss over radial side of dorsum of hand. Need at least one of these to pass	Need to name and identify to pass. Can prompt by asking what nerve innervates the extensor compartment of the forearm.
Stem: Moving onto l contractility in all ch		e, and on bedside echocardiogram is found to have a	grossly dilated heart with poor
Question 2 Cardiomyopathy – focussing on alcoholic	 What pathological process is likely to be causing his heart failure? 	Alcohol related Dilated Cardiomyopathy	Bold to pass
Subject: Path LOA: 2	 Name some causes of dilated cardiomyopathy 	Causes include myocarditis (viral causes?), toxins (alcohol, chemo, cobalt), congenita), pregnancy .	Any 2 bolded to pass
	 What are potential pathologic consequences of dilated cardiomyopathy. 	Valve dysfunction (incompetent mitral/tricuspid), mural thrombi and embolization, lethal arrhythmia, atrial fibrillation, death from progressive failure	Any 2 bolded to pass
Stem: He is also note	ed to be jaundiced. Here are his liver funct	ion tests.	l
Question 3 LFTs Clinical Building Block	Please comment on these results.	Expect comments on raised AST/ALT, with AST nearly 5 fold increase, slight rise in ALP, and marked raised in GGTall consistent with Alcohol induced hepatitis	Expect recognition of marked rise in transaminases, with little rise in ALP suggesting hepatitic picture.
			Raised GGT suggests alcohol being cause.

Stem: Moving onto I	Phys	iology.		
Question 4 Bilirubin metabolism / jaundice Subject: Phys LOA: 1	1)	Describe the metabolism of bilirubin	Formed from breakdown of Hb Bound to albumin Free bilirubin enters liver cells via OATP family (organic anion transporting polypeptide) binds to cytoplasmic proteins Conjugated by glucuronyl-transferase in ER with glucuronic acid to H2O soluble bilirubin diglucuronide Bilirubin diglucuronide actively transported against conc gradient by MDRP-2 to bile caniliculi; small amount escapes into blood, bound to albumin, excreted in urine Intestinal mucosa relatively impermeable to conj bilirubin, gut bacteria convert most to urobilinogens Enterohepatic circulation: Some reabsorbed in portal circulation and resecreted. Small amt urobilinogens excreted in urine and faeces (uro and stercobilinogens)	Bold plus one more cause
	2)	What are the causes of jaundice?	Excess production of bilirubin (eg haemolytic anaemia) Decreased uptake of bilirubin into hepatic cells Disturbed intracellular protein binding or conjugation Disturbed secretion of conjugated bilirubin into the bile canniliculi Intra or extrahepatic bile duct obstruction (1 st three liberate free bilirubin; last 2 result in elevated conjugated bilirubin in blood)	Bold to pass
Stem: Moving onto	Phar	macology.		
Question 5 Ethanol Subject: Pharm LOA: 1	1)	What are the clinical features of acute ethanol consumption?	CNS -sedation, disinhibited, impaired judgement, impaired motor skills, ataxia, slurred speech->coma, resp depression Heart-depressed myocardial contractility Smooth muscle-vasodilator ->hypothermia in OD, + uterine SM relaxation	Must mention CNS + one other
	2)	Describe the pharmacokinetics of ethanol	Absorption-rapid from GI tract (water soluble), peak levels within 30 minutes Distribution –rapid Vol Distribution ~TBW (0.5-0.7 L/kg) Predominantly liver metabolism -zero order kinetics (over 90% oxidised liver-to acetaldehyde). Mainly via Alcohol dehydrogenase (ADH), less by microsomal ethanol oxidising system (MEOS) Excreted –lungs, urine	Bold to pass-must mention ADH
	3)	Name other drugs that have zero order kinetic metabolism	Phenytoin, theophylline, warfarin, salicylates, heparin, paracetamol	One to pass

 \mathcal{O}

ACEM PRIMARY VIVA B Thursday Morning Session 1 Candidate Number:

AGREED MARK:

Stem: A 55 year-	old man presents to the ED with haematemesis	. Hepatitis B serology results from a previous admission are available.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Hepatitis B Serology	What is the most likely diagnosis, and why? Prompt: "Is this acute ar chronic?"	HBsAg positive – indicates current infection. Anti-HBc total positive – exposure to HBV. IgM anti-HBc negative – exposure not acute or recent. Anti-HBs negative – no current immunity to HBV. Diagnosis: Chronic Hepatitis B.	Bold to pass
Stem: Moving or	nto Pathology.		1
Question 2 Hepatitis B LOA: 1	a. How may Hepatitis B lead to upper gastrointestinal blee d ing?	Cirrhosis and portal hypertension with development of oesophageal varices. Coagulopathy due to loss of synthetic function (unable to produce coag proteins)	2 out of 3 bold to pass
	b. What are the other complications of Hepatitis B-induced cirrhasis?	Jaundice; Hepatorenal syndrome; Hepatic encephalopathy; Ascites/pleural effusions Splenomegaly; Hypogonadism (testicular atrophy, amenorrhoea etc); Hepatocellular carcinoma	3 to pass
	c. In general, how may a patient acquire Hepatitis B?	Congenital (ie vertical; most common worldwide) Contaminated blood products – IVDU, transfusions (from many years ago}, needlestick injury. Bodily fluids – eg sexual.	2 to pass
	d. What are the other possible outcomes of hepatitis B exposure?. Prompt: 'Aport from progressive chronic hepatitis'	Asymptomatic Acute hepatitis Non progressive chronic hepatitis Carrier state	2 to pass
Stem: Moving or	to Physiology. Despite blood loss, he maintains		1
Question 3 General principles of autoregulation	a. What is autoregulation of tissue blood flow? Prompt: "What are the main features of autoregulation?"	Capacity of tissues to regulate their own blood flow, which remains relatively constant despite moderate changes in perfusion pressure . This is achieved by altering vascular resistance.	Bold concepts to pass
(local, circulating, myogenic, neurological). LOA: 1	b. What are the proposed mechanisms involved in autoregulation?	Myogenic: Intrinsic contractile response of smooth muscle to stretch. As pressure rises, vascular smooth muscles surrounding the vessels contract to maintain wall tension (La Place Law, $T = P \times r$). Metabolic: Production of vasodilator metabolites by active tissues \rightarrow vessel vasodilation $\rightarrow \uparrow$ flow Endothelial products : vasoconstrictors (endothelin, thromboxane A2) and vasodilators (nitric oxide, prostacyclin). Circulating neurohumoral substances : vasoconstrictors (adrenaline, noradrenaline, vasopressin, angiotensin II) and vasodilators (kinins, VIP, ANP). Neural : Sympathetic (α -adrenergic receptors- vasoconstriction, β -adrenergic receptors – vasodilation) & parasympathetic (muscarinic receptors – vasodilation).	3 bold to pass with explanation
	c. What are some local factors that lead to vasodilation?	Hypoxia, hypercarbia, increased local temperature, hyperkalaemia, adenosine, acidosis, lactate, prostaglandins, histamine	4 to pass
Stem: Moving on	to Pharmacology. He is treated with octreotide		_
Question 4 Octreotide –	a. Explain the mechonism of action of octreotide.	A somatostatin analogue that inhibits the release of GH, TSH, glucagon, insulin and gastrin. [Reduces splanchnic blood flow / portal pressure].	2 bold
mechanism of action, pharmacokineti	b. Describe the pharmacokinetics of octreotide.	Plasma elimination half-life is 80 minutes. Metabolised by liver (30-40%) & 20% excreted unchanged by kidney.	Know T _{1/2} (range 40- 120 min)

c. What are some of its clinical uses?	Acute control of bleeding from oesophageal varices, sulphonylurea overdose, reduce symptoms caused by	
	hormone secreting tumours eg: acromegaly, carcinoid, gastrinoma, locating endocrine tumours using	Bold plus 1
Bonus: What are its adverse effects?"	Side effects include nausea, vomiting, abdo cramps, flatulence, steatorrhoea.	1
nto Anatomy. He also complains of a sore wrist a	after a fall.	
a. Identify this bone and describe its	Identify radius. Candidates can mention the side and why.	Radius, and
anatomical features.	Head- articulates with the capitellum of the humerus.	5/7
	Neck	
	Radial tuberosity- demarcates the head/neck from the shaft, attachment of biceps brachii.	
	Shaft- triangular in cross section, anterior and posterior oblique lines.	
	Distal end- styloid process, ulnar notch and dorsal tubercle of the radius.	
b. Which carpal banes orticulate with its distal end?	The distal end articulates with the lunate and scaphoid.	Both to pass
c. Describe the normol relative relationship between the radial and ulnar styloid processes. Prompt: "Which is normally more distal?"	Radial styloid projects further (ie more distal) than the ulna styloid.	
d. Demonstrate the movement of the radius during supination.	The axis of supination passes through the centre of the head of the radius proximally and the ulnar styloid distally. The head of the radius rotates within the collar formed by the annular ligament and the ulnar radial notch. Supination rotates the radial head laterally around its axis (pronation rotates it medially).	Pages 804-5, 819 678-9 7 th edition.
	Bonus: What are its adverse effects?" nto Anatomy. He also complains of a sore wrist a a. Identify this bone and describe its anatomical features. b. Which carpal banes articulate with its distal end? c. Describe the normal relative relationship between the radial and ulnar styloid processes. Prompt: "Which is normally more distal?" d. Demonstrate the movement of the radius	Bonus: What are its adverse effects?" hormone secreting tumours eg: acromegaly, carcinoid, gastrinoma, locating endocrine tumours using radiolabelled octreotide. Side effects include nausea, vomiting, abdo cramps, flatulence, steatorrhoea. nto Anatomy. He also complains of a sore wrist after a fall. Identify radius. Candidates can mention the side and why. a. Identify this bone and describe its anatomical features. Identify radius. Candidates can mention the side and why. Head-articulates with the capitellum of the humerus. Neck Radial tuberosity- demarcates the head/neck from the shaft, attachment of biceps brachii. Shaft- triangular in cross section, anterior and posterior oblique lines. Distal end- styloid process, ulnar notch and dorsal tubercle of the radius. b. Which carpal banes orticulate with its distal end? The distal end articulates with the lunate and scaphoid. c. Describe the normol relative relationship between the radial and ulnar styloid projects further (ie more distal) than the ulna styloid. Radial styloid projects further (ie more distal) than the ulna styloid. d. Demonstrate the movement of the radius of supination passes through the centre of the head of the radius proximally and the ulnar styloid distally. The head of the radius rotates within the collar formed by the annular ligament and the ulnar radial

	I man injured his lower limb after a fall. Starti QUESTIONS		KNOWLEDGE (essential in bold)	NOTES	
		Curthetic enioid the		Bold	
Question 1 Fentanyl	a. Describe the mechanism of action of fentanyl.	Synthetic opioid tha	t acts on the μ receptor.	boid	
LOA: 1	b. Describe the pharmacokinetics of fentanyl.	Transdermal, mucos	Igh first pass metabolism, duration of action 1-2 h , metabolised by P450 CYP 3A4 with no active metabolites. ransdermal, mucosal and IM absorption are good. Fentanyl may be given IV, IM, IN, SC, SL/buccal (with ozenge), transdermal patch, epidural.		
	c. Describe its potency relative to morphine	100 times more pot	ent. 0.1mg fentanyl = 10mg morphine	Range 100 to 200.	
	d. List the adverse effects of fentanyl.	Respiratory depress urticaria, chest wall	ion, nausea, vomiting, dysphoria, cough, sedation, constipation, urinary retention, itch, & laryngeal rigidity.	Name 4	
Stem: An x-ray of h	is injured leg is performed.			Bold and	
Question 2 Tibial X-ray (#)	a. Describe the abnormalities.	Transverse fractures of left tibial and fibular shafts (diaphyses), at junction of distal and middle thirds. Medial displacement and approximately 3cm shortening/overlap of fractured ends. Also 90 degrees external rotation of distal fragments.			
	b. What are potential complications of this injury within the first week?	Haemorrhage, compartment syndrome, neurovascular compromise, infection, pain, fat embolism syndrome.			
Stem: Moving onto	o Anatomy. His pain seems out of proportion				
Question 3	a. Identify the muscles of the posterior		cnemius (medial and lateral heads), soleus, plantaris.	2 superficia	
Lower Limb compartments (model)	compartment of the leg, using this model.	Deep- Popliteus, FH	L, FDL, Tibialis posterior.	+ 2 deep.	
LOA: 1b. What is the nerve supply of these muscles?Tibial branch of scialc. Using the model, describe the course of this nerve in the leg.Formed at apex of provide the course common fibular ner and deep to tending		Tibial branch of sciatic nerve. Aka tibial nerve , or posterior tibial nerve.		Must name nerve.	
		common fibular ner and deep to tending	popliteal fossa by bifurcation of sciatic nerve (other branch is common peroneal, or rve). Runs vertically in popliteal fossa with popliteal artery, passing between heads of gastroc bus arch of soleus. Runs inferiorly on tib posterior with post tib vessels. and lateral planter nerves under flexor retinaculum.	Bold to pas	
	Pathology. His past history includes severe a			I	
Question 4 Calcific aortic stenosis LOA: 2	a. What are the pathological consequent stenasis? Prompts – 'What type of ventricular hype 'Which ventricle is hypertrophied?'	Myocardial ischaemia (without coronary artery disease needing to be present)		Bold and 3 others	
	b. What are the likely causes of aortic st	enosis in this man?	Całcific/degenerative Bicuspid valve Rheumatic heart disease	2 to pass (do not accept congenital)	

	BONUS: What clinical signs may differentiate calcific aortic stenosis from rheumatic aortic stenosis?	Rheumatic disease involves more than one valve (ie aortic and mitral) Absence of features of M5/MR Absence of features of aortic regurgitation	
Stem: Moving onto Pl	hysiology. His blood pressure is low.		
Question 5 Renin- angiotensin system. LOA: 1	a. List some conditions which activate the renin-angiotensin system.	Activated in response to decrease in BP / ECF volume or increased sympathetic activity. Examples: Hypotension, haemorrhage, dehydration, cardiac failure, cirrhosis, Na ⁺ depletion / diuretics, upright posture. Pain, fear and arousal (fight, fright, flight) may trigger it too.	4 conditions
	b. What are the principal effects of angiotension II? Prompt: "Where does angiotensin II act?"	Arterioles (AT ₁ receptor) : vasoconstriction $\rightarrow \uparrow$ TPR. Adrenal cortex (AT ₁ receptor) : \uparrow aldosterone production $\rightarrow \uparrow$ Na ⁺ / H ₂ O reabsorption Kidney : direct effect to \downarrow GFR & \uparrow Na ⁺ reabsorption. Brain : \downarrow sensitivity of brain baroreceptor reflex \rightarrow potentiates pressor effect Pituitary : \uparrow ADH & \uparrow ACTH secretion.	Bold to pass

ACEM PRIMARY VIVA B Friday Morning Session 3

Candidate Number:

AGREED MARK:

Stem: A 65 year-	old man, with a long history of smoking, p	resents with acute dyspnoea.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 CXR	What do you see on the patient's chest x-ray?	Collapse of right lung with approximately 50% loss of volume. Right-sided pneumothorax. >2cm between lung and chest wall at hilum, making it moderate to large , per BTS guidelines.	Bold.
Stem: Moving on		and chese with definiting indicate to fulge, per progenoentest	1
Question 2 Chronic Obstructive	a. What is emphysema?	Chronic lung condition characterised by irreversible enlargement of the airspaces distal to the terminal bronchiole , accompanied by destruction of alveolar walls without fibrosis .	2 out of 3 bold
Pulmonary Disease LOA: 1	b. Describe the pathogenesis of emphysema.	 Loss of cellular homeostasis - caused by exposure to toxic substances such as tobacco smoke and inhaled pollutants which induces ongoing inflammation, epithelial cell death and extracellular matrix proteolysis. Accumulation of neutrophils, macrophages and lymphocytes results in release of elastases, cytokines (including IL-8) and oxidants that cause epithelial injury and proteolysis of the extracellular matrix. Elastin degradation products further increase the inflammation. End result is destruction of the alveolar walls without fibrosis. 	2 bold
	c. How do the clinical features of emphysema differ from those with chronic bronchitis?	 "Pink Puffer" = emphysema. Barrel chested, dyspnoeic, prolonged expiration, hyperventilation. Relatively normal gas exchange until late in disease. "Blue Bloater" = chronic bronchitis. Hx of recurrent chest infections with purulent sputum, less dyspnoea, decreased respiratory drive. Patient is hypoxic and cyanotic. Peripheral oedema results from cor pulmonole and RV failure. 	2 distinguishing clinical features.
Stem: Moving on	to Physiology.		
Question 3 Pulmonary Compliance LOA: 1	a. What is lung compliance?	Change in lung volume per unit change in airway pressure ($\Delta V/\Delta P$) – measure of lung "distensibility" Normally 200mls/cm H ₂ O. It occurs because of the opposing inward elastic recoil of the lungs and outward recoil of the chest wall. It is represented by the slope of the nonlinear lung pressure-volume curve.	Concept to pass
	b. What physiologic factors affect lung compliance?	Age, volume of the lung, phase of respiration (lower in deflation/expiration than inflation/inspiration), surfactant.	3 to pass
	c. How is lung campliance affected in emphysema?	Compliance is increased because of loss of lung elasticity / destruction of lung connective tissue & elastin (easy to inflate but reduced capacity to recoil). Patients have to force their expiration to expel air from lungs. Resultant increase in FRC.	Bold to pass
	d. What are the physiologic effects af pulmonary surfactant?	Lowers alveolar surface tension, increases lung compliance, reduces work of breathing, improves the stability of alveoli and keeps the alveoli "dry".	3 to pass
Stem: Moving on	to Pharmacology. You use bupivacaine as	the local anaesthetic prior to intercostal catheter insertion.	
Question 4 Bupivacaine	a. Describe the mechanism of action of bupivacaine.	Amide local anaesthetic, blocks voltage-gated Na channels.	Bold
LOA: 1	b. Describe the pharmacokinetics of bupivacaine.	Metabolised by the liver , Distribution half-life 28 min, elimination half-life 3.5h, large V _D of 72 L, 95% protein bound, lipophilic. Duration of action 4 to 8 hours (longer than lignocaine or ropivicaine).	Bold
	c. Give examples of its clinicol use.	Use as a nerve block in low conc 0.25% for local infiltration, digital ring block, femoral, intercostal, intrapleural, epidural (post-op), brachial plexus, sciatic nerve, intra-articular.	Name 2 (do not accept IVRA)
	d. List some of its toxic effects.	Sedation, visual and auditory disturbance, cardiac arrhythmia, hypotension & arrest, seizure.	Bold

Stem: Moving onto	Anatomy.		··
Question 5 Chest X-ray with focus on lung and pleura LOA: 1	a. Describe the expected positions of the fissures of the lung on a normal CXR.	Right lung has 3 lobes, left 2 lobes. Oblique fissures separate upper from lower lobes, horizontal fissure separates the right upper and middle lobes. Oblique fissures follow the 5 th ribs (run from 4th thoracic vertebrae to 3 cm posterior of the junction between the diaphragm and the sternum on the left, and to the sternodiaphragmatic junction on the right). Horizontal fissure on right at level of 4 th costal cartilage or hilum.	Bold (within 1 space either way
LUA. 1	b. Describe the position of the neurovascular structures in the intercostal space.	Between the middle and innermost layers, protected by the costal groove of the superior rib of each intercostal space. Ordered vein, artery, nerve from superior to inferior.	Bold
	c. When placing an intercostal catheter (ICC) in the 5 th intercostal spoce laterally, what anatomical structures are traversed?	Skin -> subcutaneous tissues -> external intercostal muscle -> internal intercostal muscles -> innermost intercostals -> parietal pleura.	2 bold
	d. Whot structures may be at risk from an ICC inserted laterally?	Neurovascular bundle; long thoracic nerve (lies in serratus anterior behind the mid axillary line); lung, diaphragm, pericardium/heart and spleen if on the left; liver if on right.	2 bold

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: TFTs Clinical Building Block	1. Please interpret these results.	Raised FT4, FT3 and suppressed TSH consistent with hyperthyroidism	Bold
Moving onto Physic	logy		
Question 2 Regulation of thyroid hormones Subject Phys LOA: 2	 How are thyroid hormones regulated? (Prompt Describe the feedback mechanism) (Prompt What factors affect TSH secretion?) 	TRH from hypothalamus=> TSH from ant pituitary=> T4 (& small amount T3)=> T3 in periphery.Negative feedback on TSH by free T3 & T4 (In hypothalamus and pituitary. Effect of T3>T4).Both secretion & synthesis of TSH affected \uparrow by cold, \downarrow by warmth (esp in infants. Effect in adults not clear) \downarrow by stress (TRH) and glucocorticoids (TSH). \downarrow by dopamine & somatostatin (TSH)	Bold & concept One factor
	2. Other than cardiovascular, what are the physiological effects of thyroid hormones?	Calorigenic (↑ metabolic rate, ↑ stimulation O2 consumption) Adipose tissue: catabolic (stimulated lipolysis); Muscle: catabolic (↑protein breakdown); Bone: developmental (promote normal growth(Cretin) and skeletal development); Nervous system: promote normal brain development & mentation Gut: metabolic (↑ carbohydrate absorption); Cholesterol: formation of LDL receptors and removal of circulating cholesterol	Bold plus one other system

Question 3	1. Describe the pharmacodynamics	B-Blocker: Competitive non selective B Blocker,	Bold and 2 CVS effect
Propranolol (Beta	of propranolol that make it useful	blocking both B1 and B2 receptors	
Blockers)	in thyrotoxicosis.		
Subject: Pharm		CVS: \downarrow BP, \downarrow HR (esp rate control of AF), both	
	(Prompt: What are the cardiovascular	negatively inotropic and chronotropic.	
LOA: 1	effects?)	\downarrow catecholamine effects which are prominent in hyperthyroid.	
		Inhibition of peripheral conversion of thyroxine (T4) to triiodothyronine (T3) (esp in propranolol cw other B-blockers)	
		Has Na-channel blocking action ("membrane stabilisation")	
	2. What are the adverse effects of propranolol?	 CVS: Bradycardia, Hypotension, worsening CCF, worsening ischaemia in PVD, QRS widening & arrhythmias in toxicity CNS: sedation, depression, dreams, In toxicity-coma/seizure/delerium Resp: worsening asthma/COPD, Other: decreased exercise tolerance, fatigue, impotence, ↓libido, mask symptoms of hypoglycaemia 	1 example from each bold system

	1 Identification becautering of the	Analyzing handley of COSA untilling of the strength	All 2 hold for pass
Question 4 Neck Model (sagittal section) Subject: Anat	 Identify the boundaries of the anterior triangle of the neck on this model. 	Anterior border of SCM, midline of neck and inferior border mandible	All 3 bold for pass
LOA: 1	2. a) Describe the surface markings of the carotid sheath in the neckb) What are its contents?	a) Runs along a line joining the SCJ and a point midway between the mastoid process and angle of mandible	a) all
	by what are its contents.	b) Common Carotid a., IJV and Vagus	b) all
	 Describe the position and features of the Thyroid gland 	Anterior in neck at level C5-T1, deep to Sternohyoid and sternothyoid m. R and L lobes sit anterolateral to the Larynx and Trachea. The isthmus joins these at level approx 2-3 tracheal rings	2/3
5tem: Moving onto	Pathology. On examination her thyroid glar	l nd is enlarged.	
Question 5 Cellular injury – adaptation and	1. Define hyperplasia	Hyperplasia is an increase in the number of cells in an organ or tissue resulting in increased mass.	Bold to pass
hyperplasia Subject: Path LOA: 1	 What are the different types of hyperplasia and give some examples for each of them 	 Physiologic hyperplasia a. hormonal-female breast at puberty and during pregnancy b. compensatory-post partial hepatectomy Pathologic hyperplasia a. excess hormones-Benign prostatic hypertrophy, dysfunctional uterine bleeding b. response to viral infection – papillomavirus 	Bold and one example of each to pass
	 Name some clinical manifestations of diffuse toxic hyperplasia of the thyroid (Prompt: Graves' disease) 	Cardiac-tachycardia, palpitations, heart failure Eye-staring, lid lag, proptosis GI-malabsorption, diarrhoea Neuro-tremor, anxiety, poor concentration Other	4 to pass

.

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 CT – middle cerebral artery stroke Clinical Building Block Moving onto Anato	 What is the major abnormality on his CT? 	Non contrast Head CT shows area of hypodensity in right MCA region/territory	Right thromboembolic MCA stroke
Question 2	2. What is the arterial supply of the	ACA area anterior to anterior horns lat ventricle	Anterior, Middle and
Cerebral circulation (CT) Subject: Anat	cerebral cortex? Name the corresponding parts they supply	(frontal and parietal lobes medially and superiorly) MCA area between the ant & post horns LV (most	posterior cerebral artery with reasonable distribution
LOA: 1	(Prompt- demonstrate on the CT)	of lateral surface, parietal, and temporal lobes) PCA area posterior to posterior horn LV (Inferior and medial aspects of occipital and temporal lobes)	
	3. Describe the venous drainage of the cerebral hemispheres?	Superior cerebral veins (superolateral surface of the brain) > superior sagittal sinus. Inferior and superficial middle cerebral veins (inferior, posterior and deep aspects of cerebral hemispheres) > straight, transverse and superior petrosal sinuses. Great cerebral vein (midline vein formed from the paired internal cerebral veins) >merges with inferior sagittal sinus to form the straight sinus. Eventually terminate in Internal Jugular veins	General concept

Question 3 Ischaemic Stroke /	1. What are the main pathological processes causing ischaemic	Thrombotic occlusion – atherosclerosis most	Bold to pass and at least 2 causes of embolism plus one
Reperfusion injury	stroke?	Embolism – AMI, mural thrombus, Valvular heart	other (embolic or
Subject: Path	(Give examples for each category)	disease, AF, vascular surgery and shower	inflammatory).
LOA: 1	(Give examples for each category)	embolism, fat embolism, endocarditis Inflammatory process leading to luminal	
		narrowing - Infectious vasculitis, autoimmune vasculitis, primary angiitis of the CNS	
	2. What are the distinguishing pathological features of haemorrhagic and non- haemorrhagic ischaemic cerebral infarcts?	Haemorrhagic (red) - multiple, sometimes confluent, petechial haemorrhages typically associated with embolic events. Thought to be secondary to reperfusion either via collaterals or dissolution of materials. Greater risk if anticoagulated.	Bold causes and concepts
	Prompt: why d <i>o</i> es haemorrhagic change occur in ischaemic stroke.	Non-Haemorrhagic (pale/bland anaemic) – usually associated with thrombosis.	
	3. How are these pathological processes important in relation to stroke thrombolysis?	Complications higher with embolic/haemorrhagic CVAs. Trying to reverse injury in ischaemic penumbra. In non- haemorrhagic CVA little macroscopic change can be seen within the first 6 hours. Earlier treatment leads to better outcome and less haemorrhagic risk.	Reversible ischaemic penumbra (term or concept) Red Vs pale –Red Cl

Question 4 Temperature regulation	1. What is the pathogenesis of fever	Bacterial toxins eg endotoxin act on monocytes, macrophages, and Kupffer cells to produce cytokines that act as endogenous pyrogens	Concept to pass
Subject: Phys LOA: 1	(Prompt: What causes a febrile response?)	 IL-1β, IL-6, IFN-β, IFN-γ, and TNF-α can act independently to produce fever. Cytokines also produced by cells in CNS when these are stimulated by infection -may act directly on the thermoregulatory centres. 	
	(Prompt: Which area of the brain is activated in a fe b rile response?)	Activates the preoptic area of the hypothalamus . Causes release of prostaglandins eg PGE2. This causes a raise in temp set point resulting in fever	
	 What is the body's response to hot and cold environments? (Prompt: What happens to heat 	Mechanisms activated by cold: (post hypothalamus) Inc Heat Production: Shivering, Hunger, Voluntary activity, NA/A	1 mechanism for each of heat production & loss for cold
	production & loss?)	release Dec Heat Loss, Skin vasoconstriction, Curling up, Horripilation.	
		Mechanisms activated by heat : (ant hypothalamus) Dec Heat Production Anorexia, Apathy & Inertia. Inc Heat Loss, Cutaneous vasodilation, Sweating, Respiration.	1 mechanism for each of heat production & loss for hot environment

Question 5	1.	Describe the pharmacokinetics of	Rapid absorption. Bioavailability 70-90%.	4 points to pass (out of total 8)
Paracetamol		paracetamol.	Peak concentration after 30-60 mins. Slight ppb.	
Subject: Pharm			Partial metabolism by hepatic MEs to	
LOA: 1			paracetamol glucuronide and sulphate (90%). First order kinetics. T1/2 2-3 hours.	
			<5% excreted unchanged.	
	2.	What is its mechanism of action?	Selective COX-2 inhibitor .	bold to pass
	3.	What is the mechanism of	Zero order kinetics.	bold & concept to pass
		paracetamol toxicity?	paracetamol is conjugated with glucuronide and	
			sulfate (by transferase enzymes) - this pathway	
			becomes saturated in OD, allowing increasing	
			paracetamol to be metabolized by the smaller CYP 2E1 pathway to NAPQI.	
			NAPQI is detoxified by glutathione which	
			becomes depleted resulting in high levels of toxic	
			metabolite (NAPQI).	
	4.	[If time only] What are the	Nausea, vomiting, abdominal pain, liver failure,	4 to pass
		clinical manifestations of	renal failure (tubular necrosis), HAGMA, massive	
		toxicity?	doses - coma.	

•

•

TOPIC	QUESTIONS	sing dysphoea and lethargy. Please review her bioc KNOWLEDGE (essential in bold)	NOTES
Question 1	1. What are the abnormalities?		
•	1. What are the aphormanues?	Hyponatraemia, hypo-osmolar plasma	
Clinical Building Block:	2. What are some causes in this	SIADH, CCE, Mistor interviention, drugs/other	
Hyopnatraemia &	patient?	SIADH; CCF; Water intoxication; drugs/other	Two causes
Osmolarity			
Stem: Moving onto	Physiology	I	
Question 2	1. Describe the process by which	As plasma asmatia prossure rises. N thirst A	Thirst increases water intake.
-	extracellular fluid tonicity is	As plasma osmotic pressure rises \rightarrow thirst \uparrow +	ADH reduces water excretion
Tonicity,		sensed via osmoreceptors in anterior	
vasopressin Subject: Phys	regulated.	hypothalamus (mainly organum vasculosum of	by kidneys -> dilution of ECF
Subject. Phys		the lamina terminalis OVLT) \rightarrow vasopressin (ADH) secretion rises (from posterior pituitary) \rightarrow renal	
LOA: 1		V_2 receptor stimulation \rightarrow insertion of water	Bold + correct understanding
	(Prompt lead in: where is plasma osmotic	channels (aquaporins) in luminal membranes of	of concept to pass
	pressure sensed?)	renal collecting tubules, allowing more water to	
		return to body.	
		Conversely as plasma osmotic pressure falls	
		(285mosm/kg is the critical point) ADH secretion	
		suppressed.	
	2. What factors <i>other</i> than rising	Decreased ECF vol, pain, emotion, surgical stress,	Bold + 1 more to pass
	osmotic pressure increase	exercise, nausea & vomiting, standing,	
	vasopressin secretion?	angiotensin II, meds (clofibrate &	
		carbamazepine).	
]		
			<u></u>

Question 3 Azithromycin (Macrolides) Subject: Pharm	1. What class of antibiotic is Azithromycin	Macrolide	Bold to pass
LOA: 2	2. Describe the mechanism of action of azithromycin?	Inhibition of bacterial protein synthesis by binding 50S ribosomal RNA, blocking aminoacyl translocation and formation of initiation complexes (transpeptidation), may be inhibitory or bactericidal (esp at higher concentrations)	Bold to pass
	3. Against which micro-organisms is azithromycin effective?	 Gm+ pneumococci,strep,staph,corynebact Mycoplasma legionella chlamydia sp, listeria Some mycobacteria Gm- Neis sp, Bordatella pert, Trep pall. Campylobacter sp, Bartonella 	3 to pass but must include one atypical
	 4. How does Azithromycin differ from other macrolides? (Prompt eg Compared to erythromycin & clarithromycin) 	Higher tissue penetration (tissue conc >>>>serum conc) Long elimination T1/2 (2-4 days) vs 2-5 hr Single daily dosing More effective against haemophillus m.catarr. neiss Highly effective against chlamydia sp Less active against staph & strep Excreted unchanged in urine Absorption impeded by food Doesn't inhibit hepatic cytochrome P450 so drug interactions are uncommon	Bold plus one other

Question 4	1. Identify the bony landmarks of	3 bones – ilium, ischium, pubis	Bold
Pelvis - bone	the pelvis	Surface – iliac crest, ASIS, AIIS, ischial tuberosity,	
Subject: Anat		ischial spine, PSIS, PIIS, symphysis pubis	
_OA: 1		Joints – SI joints, acetabulum/femur, symphysis	
		pubis	
		Other – pubic rami (4) , ala of ilium, greater/lesser sciatic notches, obturator foramen	
	2. Identify on the model the	lliofemoral (AIIS/acetabular rim –	Bold
	ligaments of the hip joint and	intertrochanteric line), pubofemoral (obturator	
	their attachments.	crest – capsule & iliofemoral lig.), ischiofemoral	
		(acetabular rim – base greater trochanter)	
	3. Where might you find a	Pubic rami, neck of femur, proximal shaft	one
	pathological fracture on the model?		
Stem: Moving onto F	Pathology		
Question S	1. What are the main categories of	Adenocarcinoma (more common in F)	
Lung Neoplasia	primary lung cancer?	Squamous cell carcinoma (more common in M)	Bold
	,B		
and principles of	,	Small cell carcinoma (v. malignant)	
neoplasia	,	Small cell carcinoma (v. malignant) Large cell carcinoma (undifferentiated)	
neoplasia	 What are the pathways by which 		3 of 4 Bold
and principles of neoplasia Subject: Path LOA: 2		Large cell carcinoma (undifferentiated)	3 of 4 Bold
neoplasia Subject: Path	2. What are the pathways by which	Large cell carcinoma (undifferentiated) Local invasion Direct seeding of cavities/surfaces Lymphatics	3 of 4 Bold
neoplasia Subject: Path	2. What are the pathways by which	Large cell carcinoma (undifferentiated) Local invasion Direct seeding of cavities/surfaces Lymphatics Haematogenous	3 of 4 Bold
neoplasia Subject: Path	2. What are the pathways by which	Large cell carcinoma (undifferentiated) Local invasion Direct seeding of cavities/surfaces Lymphatics	3 of 4 Bold
neoplasia Subject: Path	 What are the pathways by which a malignant tumour may spread? What paraneoplastic syndromes 	Large cell carcinoma (undifferentiated) Local invasion Direct seeding of cavities/surfaces Lymphatics Haematogenous Surgical instruments/nerves SIADH (HypoNa as per CBB, small cell Ca)	3 of 4 Bold SIADH and 1 other
neoplasia Subject: Path	 What are the pathways by which a malignant tumour may spread? What paraneoplastic syndromes can be associated with lung 	Large cell carcinoma (undifferentiated) Local invasion Direct seeding of cavities/surfaces Lymphatics Haematogenous Surgical instruments/nerves SIADH (HypoNa as per CBB, small cell Ca) ACTH (Cushing's)	
neoplasia Subject: Path	 What are the pathways by which a malignant tumour may spread? What paraneoplastic syndromes 	Large cell carcinoma (undifferentiated) Local invasion Direct seeding of cavities/surfaces Lymphatics Haematogenous Surgical instruments/nerves SIADH (HypoNa as per CBB, small cell Ca) ACTH (Cushing's) PTH, PTH-related peptide, PGE (HyperCa)	
neoplasia Subject: Path	 What are the pathways by which a malignant tumour may spread? What paraneoplastic syndromes can be associated with lung 	Large cell carcinoma (undifferentiated) Local invasion Direct seeding of cavities/surfaces Lymphatics Haematogenous Surgical instruments/nerves SIADH (HypoNa as per CBB, small cell Ca) ACTH (Cushing's)	

ACEM PRIMARY VIVA D Thursday Morning Session 1 Candidate Number:

AGREED MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Amitriptyline– mechanism of action, side effects Subject: Pharm	Describe the pharmacodynamics of amitriptyline	Blocks reuptake of serotonin and noradrenaline , and blocks muscarinic, sympathetic α ₁ , GABA _A , Na+ channel and histamine receptors. Monoamine vs neurotrophic vs neuroendocrine theories.	Bold and 2 other receptors
LOA: 1	What are the toxic effects of amitriptyline and how are they mediated?	 Blurred vision, dry mouth, tachycardia, retention, delirium (anticholinergic) Sedation (antihistamine) Hypotension (anti-alpha effects), Wide QRS and bradycardia (Na channel blockade) Seizures (direct central effect) 	Must name effects and cause for at least 3 groups
Stem: Moving onto Anat			
Question 2 Lower leg – popliteal fossa – vascular supply (Photo) Subject: Anat LOA: 1	Identify the superficial boundaries and the contents of the popliteal fossa	Superiorly: biceps femoris (1), semitendinosus (12) and semimembranosus (11). Inferiorly : lat (3) and med (4) heads of gastrocnemius Contents: Popliteal Art (8) & V (10), Small saphenous V (13) ; Tibial n. (15), common fibular n. (2) & sural n. (14);	To pass – biceps, one of the semis, both heads of gastrocnemius; Common fibular & tibial nerve, popliteal artery and vein
			Bold to pass
	How does the popliteal artery supply the leg and foot?	Divides into Post and Ant tibial arteries at lower border of popliteus. Post Tib runs in post compartment then palpable post to med malleolus	
	PROMPTS: What are the main branches	and divides into med and lat plantar arteries to sole of	
	of the popliteal artery?	foot. Main branch is fibular art to post and lat	
	Prompt: What pulses can you palpate below the knee?	compartments Ant Tib runs ant compartment then crosses anteriorly over ankle to become dorsalis pedis	

Question 3	ogy. He is found to have absent right pedal Describe the sequence of events that	\downarrow ox phos & \downarrow ATP prod ⁿ \rightarrow	3 of 4 bold
lschaemic injury	occur in reversible ischaemic cellular	Failure Na pump: K efflux, Na influx,	
Subject: Path	injury	Cell swelling →Ca influx:	
OA: 1	PROMPT: What occurs within the cell	Further \downarrow ATP prod ⁿ ; enzymes activated $\rightarrow \downarrow$ glycogen	
UA. 1	after delivery of oxygen and substrate is	& \downarrow protein synthesis \rightarrow	
	compromised?	Cytoskeleton As: loss of microvilli, "bleb" formation,	
	compromised:	"myelin figures" from degenerating cell membranes \rightarrow	
		Mitochondrial swelling	
	List the morphological changes of	1.Severe mitochondrial swelling	Any 2
	irreversible cellular injury	2.Extensive damage to plasma membrane (including	
		"myelin figures")	
		3.Lysosomal swelling	
		4.Necrosis or apoptosis	
	Describe reperfusion injury (time	Increase injury to ischaemic cells with restoration of	At least one concept
	permitting)	perfusion. Due to generation of reactive O_2 and	
		nitrogen species (NO), Ca++ re-entering cell, activation	
		inflamm and complement cascades	
Stem: CBB A venous blood			
Question 4	Describe the abnormalities on this	Low pH, low HCO ₃ , metabolic acidosis (AG 22) with	Bold
Blood gas with metabolic	venous gas	respiratory compensation	
acidosis Clinical Building	PROMPT: What type of acidosis is it?		
Block			
Stem: Moving onto Physic	· · ·		
Question 5	How will the kidneys respond to a	Aims to return serum pH to normal by increasing H+	Must know that H+ actively
Renal buffers in acid-base	metabolic acidosis?	excretion.	secreted into tubular fluid in
regulation		Kidney reabsorbs HCO ₃ by actively secreting H+.	exchange for Na.
Subject: Phys		Renal tubule cells contain carbonic anhydrase	
OA: 1		converting CO ₂ to H+ and HCO ₃ , then PCT cells secrete	
		H+ in exchange for Na+	
		In the DCT, H+ is secreted by a proton pump, limited	Must know about buffering and
		by urinary pH >4.5 (limiting pH).	name 2 buffers.
	PROMPT: Describe the role of buffers in	Buffering in tubular fluid pH with H ₂ CO ₃ , HPO ₄ and	
	the kidney	NH ₃ allows greater H+ secretion.	

Stem: A 50 year old		a chronic cough and fever. We will start with a CBB	AGREED MARK:
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 CXR – RUL collapse /consolidation Clinical Building Block	Describe and interpret this CXR What are the possible diagnoses?	 Opacification involving lower half of right upper lobe, consistent with consolidation. Well defined fissure – slightly elevated. Relevant negatives: no collapse (no shift of trachea / mediastinum / diaphragm), no effusion, no pneumothorax, no #, no invasive lines/tubes, no monitoring, normal heart size DDx: Pneumonia (bacterial, viral, fungal, TB) Less likely atypical infection, abscess, aspiration, PE, malignancy 	Bold to pass Must have bold and 1 other
Stem: Moving onto P	athology. TB is suspected		
Question 2 TB Subject: Path LOA: 1	 Outline the natural history and spectrum of TB. PROMPT: What can happen after primary infection? 	 Primary infection Primary complex (localised caseation) (Ghon complex is primary TB with mediastinal nodes) Primary complex may heal (orgs not viable) or lead to latent lesion (orgs viable) Latent period OR progressive primary TB (latter of which may lead to miliary TB) Latent lesion reactivated leading to secondary TB. (Reinfection may also lead to secondary TB) Secondary TB occurs as localised (pulm or extra-pulm) caseating destructive lesions OR progressive secondary TB Progressive secondary TB may lead to miliary TB 	4/4 in bold rear #2, the rated bit up and (excessed (beenclose) where the rated bit up and (excessed (beenclose)) where the rated of
	2. How is TB diagnosed?	 Clinical features in at risk patients (Hx and Ex) and apical lung consolidation/cavitation on CXR Microbiological confirmation a. Acid fast smears and cultures (3-6 wks solid agar media, 2 weeks liquid media) b. PCR 3. Other eg Mantoux test (TST) 	Must have bold

Question 3	What is "dead space"?	Portion of the tidal volume that does not participate	Demonstrate principle in bold to
Physiological vs		in gas exchange. VT = VD + VA	pass
anatomical dead			
space	What types of DEAD SPACE are there?"	ANATOMICAL	Two types of dead space and
Subject: Physiology		 Volume of conducting airways (without alveoli) – 	describe what it is. May mention
LOA: 1	PROMPT: Explain difference between the two types	trachea, bronchi, terminal bronchi. • About 150mls of 500ml VT	VQ mísmatch
		Determined by: Increased diameter of airways	
		during inspiration and Size & posture of individual PHYSIOLOGICAL	
		 Volume of gas that does not eliminate CO2/not 	
		equilibrating with blood • Same as anatomical DS in	
		normal individuals • Increased in lung disease because	
		of inequality of blood flow and ventilation within the	
		lung	
	How is it measured? (bonus)	Anatomical – Fowlers method, Physiological - Bohr	Will accept either
		method	
Stem: Moving onto Pl	harmacology. Cultures grow an organism which	is sensitive to ciprofloxacin	<u> </u>
Question 4	Describe the pharmacokinetics of	PO or IV.	Bold to pass
Ciprofloxacin- route	ciprofloxacin	PO bioavailability > 80%	
of administration,		20-40% protein bound	
dose and		Elimination half-life 3-5 hours	1
mechanism of action		PO 250 - 500mg bd (max 1.5gm)	
Subject: Pharm		IV 200 – 300 mg bd (max 1.2 gm)	
LOA: 2	PROMPT: Which patients will need a dose	Renal elimination – dose adjustment if Cr Cr <	
	adjustment?	50ml/min	
	Describe its mechanism of action	Blocks DNA synthesis by inhibiting bacterial	
		topoisomerase II (DNA gyrase) and IV- prevents	
		normal transcription and replication	
	What is its antimicrobial spectrum?	Excellent Gram neg activity, moderate Gram pos	
		activity.	
		S Aureus, Mycoplasma, Chlamydia, Legionella,	
		Pseudomonas, Mycobacterium and Anthrax.	

Stem: Moving onto A	nato	my. For ongoing treatment a cen <u>tral venou</u>	s line is needed.	
Question 5 Thoracic inlet	1.		Left internal jugular vein (8), Right and Left subclavian veins (24), Left brachiocephalic vein (13),	Must get bold
(photo)		image.	SVC (26), Right brachiocephalic vein (18), Inferior	
Subject: Anatomy	1		thyroid veins (7)	
LOA: 1				
	2.	Identify the major arterial structures in the image.	Brachiocephalic trunk (4), Right common carotid artery (19), Left common carotid artery (14), Right subclavian artery (21), Internal thoracic artery (9)	
	3.	What other structures can you identify	Cricoid, thyroid gland, trachea, lung, pleura, phrenic nerve, scalenus anterior, thyrocervical trunk	Must get 3
	4.	What are some complications of an internal jugular line insertion?	Pneumothorax Misplacement/arterial puncture Haemorrhage Infection Injury to thoracic duct on left	Must get 3

Candidate Number:

AGREED MARK:

•

TOPIĆ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1. What is the mechanism of action of	Depolarizing neuromuscular blocker	Must get bold with
Suxamethonium	suxamethonium?	Phase I (depolarising)- Reacts with nicotinic receptor, opens	understanding concept
including		channel, depolarizes NM endplate with spread to adjacent	
pharmacokinetics	Prompt. Where does it act?	membranes, causing fasciculation prior to paralysis.	
Subject: Pharm		Phase II (desensitising) - Continued or repeated exposure	
		to sux – end plate depolarisation decreases – membrane	
LOA: 1		repolarises but cannot be depolarised as is desensitised	
	2. What are the pharmacokinetic	Rapid onset (30-60 seconds)	2 of 3
	properties of suxamethonium?	Short duration of action (2-8 minutes)	
		Hydrolysed rapidly by plasma cholinesterase	
	3. What are the adverse effects of	Muscle pain from fasciculation	4 of 7
	suxamethonium?	Bradycardia	
		Potassium release – burns, CHI, trauma, stroke	
		Raised Intraocular Pressure	
		Raised Intragastric pressure	
		Malignant hyperthermia	
		Prolonged paralysis (reduced or abnormal cholinesterase)	
Stem: Moving onto	Anatomy		
Question 2	1. On the model, identify the structures of	Cartilages: thyroid (20), cricoid, epiglottis (54), (arytenoids,	5 of 6 bold plus 2 others
Airway - model	the larynx	corniculate, cuneiform)	
Subject: Anat LOA: 1		Ligaments: cricothyroid membrane (23), thyrohyoid(21,22), vocal cords (60)	
		Muscles: cricothyroid muscle (18), cricoarytenoid	
		Spaces and folds: vallecula , aryepiglottic folds (57), piriform recess	
	2. What is the innervation of the larynx?	Cranial Nerve X (Vagus)	Bold with details of one
	,	Inferior laryngeal N – (terminal branch of Recurrent	
		laryngeal nerve): All intrinsic muscles of larynx except for	
		Cricothyroid M, sensory below cords.	
		External Laryngeal N supplies Cricothyroid M	
		Internal Laryngeal N sensory above cords	
		(Int and Ext Laryngeal Ns both branches of Superior	
		Laryngeal Nerve	
Stem: This is a CBB	question. A lumbar puncture is performed. This		L
Question 3	Interpret this result	Turbid with low gluc, high protein and high WCC – mostly	Bold to pass
CBB: CSF	Prompt. What is the likely diagnosis?	PMNL. Likely bacterial meningitis	

Stem: Moving onto I	Pathology		
Question 4 Neisseria meningitidis Subject: Path LOA: 1	1. How does Neisseria meningitidis cause infection	 Common coloniser of oropharynx - 10 % of popn at any one time, carry it for months Spread by resp droplets Most people develop immune response and clear it – protected against later infection from this serotype (>/13 serotypes). Invasive dx when encounter new serotype Invades resp epithelium, then blood stream Capsule allows evade immune response by prevention opsonisation and complement destruction Mortality still approx. 10% despite AB Rx. 	Need 4/7 to pass
	What are the clinical consequences of N. meningitidis infection	Death, gen sepsis, necrotising vasculitis, seizures, SIADH, CVA, hydrocephalus, meningitis, sensorineural hearing loss, cognitive impairment	Need 4 to pass
	 Apart from Neisseria, what else can cause meningitis? 	Other bacteria: E coli & Group B Strep (infants), Strep pneumonia, Listeria, Haemophilus, Listeria Viral: Enterovirus, measles Other: TB, Rickettsial, Carcinoma, Auto-immune, chemical	Must have two specific bacteria plus viral as a group
Stem: Moving onto I	Physiology.		•
Question 5 Venous pressure and flow Subject: Phys LOA: 1	Describe the mechanism of venous return to the heart Prompt. In a healthy person	 Thoracic pump : insp generates neg (-) intra-throracic P and pos (+) intra-abdo P. Venous valves : one way flow Heart beat : AV valves pulled downwards in systole – inc size atria – blood sucked into atria Muscle/arteriał pump : contraction musc/arteries adj to veins compresses veins Differential resistance – less resistance in more prox (larger) veins 	Thoracic pump plus one other
	What factors might affect CVP in this patient?	 Decrease CVP - fluid loss (third spacing), loss arterial tone, loss muscle pump (ventilated), myocardial depression (acidosis), poor ventricular filling (tachycardia) Increase CVP - positive P ventilation (but will decrease venous return), fluid replacement, vasopressor use 	1 example from each bolded category
	What is the mean CVP in a healthy adult?	6-8 cm H2O or 4.6 to 5.8 mmHg	Reasonable value

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Bones - Tibia Subject: Anatomy	Identify this bone and its main features.	L or R tibia. Medial and lateral condyles. Medial and lateral tibial plateaus, separated by intercondylar tubercles of the intercondylar eminence. Tibial tuberosity, shaft, medial border, anterior border, interosseous border, soleal	Bold to pass
LOA: 1		line (post), m edial malleolus, fibula notch.	
	Please identify the attachments of the proximal end of this bone. Prompt "What attaches to the superior surface of the bone"	Ant and post horns of the medial meniscus. Ant and post horns of the lateral meniscus. Ant + post cruciate ligaments. Patellar ligament. Semimembranosus & Vastus medialis (med). Iliotibial tract, ED longus + peroneus longus (lat).	Bold to pass
Stem: A set of arterial	blood gases are obtained		
Question 2: Blood gas with acute respiratory acidosis Clinical Building block	Please describe the abnormalities and interpret these results. <i>Prompt</i> "What is the main acid- base disturbance?"	Low pH High CO ₂ High base excess Severe respiratory acidosis without expected Low pO ₂ for FiO ₂ (likely A-a gradient high)	Bold to pass
Stem: Moving onto Pa	thology. You suspect that she is deve	loping Acute Respiratory Distress Syndrome.	
Question 3 ARDS Subject: Pathology LOA: 2	Describe the pathogenesis of ARDS	Type of acute lung injury. Initial injury to alveolar capillary membrane (epithelium) or vascular endothelium-> acute inflammatory response (neutrophil mediated), resulting in increased vascular permeability & alveolar flooding; fibrin deposition; formation of hyaline membranes; & widespread surfactant abnormalities (with damage to Type II pneumonocytes). Eventually organisation with scarring.	3 of 4 bold
	What conditions are associated with the development of ARDS?	 Infection (sepsis, diffuse pulmonary infection) Physical / Injury (trauma – head, pulmonary, fractures, near drowning, burns, radiation). Inhaled irritants (O2 toxicity, smoke, irritant gases and chemicals). Chemical injury (Opiates, barbiturates, paraquat, acetylsalicylic acid, , gastric aspiration). Haematological conditions (multiple transfusions, DIC). 	Need 1 example from 3 categories + must include infection

		O ther (pancreatitis, uraemia, cardiopulmonary bypass, hypersensitivity – organic solvents, drugs)	
Stem: Moving onto P	hysiology.		
Question 4 CO ₂ transport Subject: Physiology LOA: 1	Q1) How is CO ₂ transported in the blood? Prompt:Are there any other mechanisms?	Diffusion, Carbamino-proteins and CO2 to Bicarbonate buffering	2/3 bold required Bic is the
LOA: I	Q2) What is the most important mechanism? Prompt:What proportion does each mechanism contribute.	Diffusion 5 (a)-10 (v)% Carbamino 5 (a)-30%(v) Bicarbonate 60 (v)-90 (a)%	most important
	Q3) What is the role of Red Blood Cells in CO2 transport?	a) Carbonic anhydrase only found significantly in Red cells, major buffer for CO ₂ and H+ <u>b) Haldane Effect</u> -Hb (partic de-oxy) is also major H+ buffer allowing ->/faster H+/HCO3dissociation - <u>Chloride shift</u> (allowing 70% HCO ₃ - diffusion into plasma maintaining ionic neutrality/ enhanced diffusion) is mediated by Band 3 Cl- transporter in RBC membrane c) - Hb protein is the major carbamino protein (better when deoxyHb as more negative charge)	1/3 for pass
Stem: Moving onto P	harmacology. She has been treated wi	th Salbutamol for her dyspnoea.	
Question 5 Salbutamol	1) What class of drug is salbutamol	A selective beta 2 agonist that is used as a bronchodilator	Bold to pass
Subject: Pharmacology	2) What are the different routes of administration of salbutamol <i>Prompt:Any other route?</i>	Inhaled- nebulized, puffer +/- spacer Oral, IV, IM, SC	Bold to pass
LOA: 1	3) What are the advantages of the different methods of administration of inhaled salbutamol	<u>Nebulized:</u> Rapidly absorbed, no co-ordination required, not much education required, no first pass metabolism <u>Puffer +/- spacer:</u> As effective as nebulized when used properly, targeted, lower dose, less side effects	Bold to pass
_	4) What are the advantages and disadvantages of IV salbutamol in asthma	Pros- no first pass metabolism, maybe useful in severe/life threatening asthma Cons- Requires IV (disadvantage in children), more systemic side effects	2/4 to pass

ACEM PRIMARY VIVA A Thursday Afternoon Session 2 Candidate Number:

.

AGREED MARK

	QUESTIONS	her arm following a fall. We will start with anatomyKNOWLEDGE (essential in bold)	NOTES
TOPIC Question 1 Brachial plexus (photo, McMinn's)	Here is a photo of the right brachial plexus. 1) Please identify its main features.	Deltoid (4) Biceps (2) Cords - Lateral (6), posterior (20) & medial (12) Musculocutanous nerve (18), Axillary nerve (1), Radial N (21) Median N (17) Ulnar N (26)	Bold to pass
Subject: Anatomy	PROMPT: Please list, and identify where you can, the branches of each cord.	Lateral cord-> musculocutaneous N, lat pectoral N + lateral root of median nerve (8) . Post C -> Upper (27) +lower (11) subscapular Ns, the thoracodorsal N(25), axillary N(1) + radial N(21) Medial C-> the medial root of the median N (16) , the ulnar N, the medial cutaneous nerve of the arm (13) & forearm (14), the medial pectoral nerve.	To pass – list at least 2 branches from each cord & identify those in bold
	2) What does the musculocutaneous N supply?	<u>Motor supply</u> -> 3 muscles of ant compartment of the arm (biceps, brachialis & coracobrachialis) <u>Sensory supply</u> -> skin over the lat aspect of the forearm (becomes the lat cutaneous N of the forearm after giving off its motor supply)	To pass – 1 motor & sensory distribution
Stem: Clinical Buildin	g Block. Laboratory investigations as part o	f her workup of her fall have been performed.	
Question 2 FBC and Fe studies Subject: CBB	Please describe & interpret these blood test results.	Severe anaemia Microcytic Low MCHC Low serum Ferritin Low serum iron High TIBC Low TF Interpretation: Fe deficient anemia	Bold for pass
Stem: Moving onto F	Pathology.		
Question 3 Iron deficiency anaemia	1) What are the causes of Fe deficiency anaemia	Chronic blood loss – Gl tract, Menorrhagia. Increased requirements – pregnancy, children. Dietary Lack –developing world, infants (prolonged breastfeeding) elderly, extreme diet Impaired absorption –celiac, gastrectomy	Bold + 3 other examples from any categories
Subject: Pathology LOA: 1	2) What are the symptoms of Fe deficiency anaemia	<u>General</u> –fatigue, weakness, dyspnoea, angina <u>Features of cause</u> – melaena, menorrhagia	4 for pass
	3) Are there any specific features of Fe deficient anaemia?	Koilonychia, alopecia, glossitis,pica, pharyngeal web	1 for pass

Stem: Moving onto Ph	hysiology.		
Question 4 Iron metabolism and haemoglobin Subject: Physiology LOA: 1	How is Iron absorbed from the gastro- intestinal tract? What factors reduce Iron absorption from the gastro-intestinal tract? (Hint- what foods, medications or procedures may result in reduced Iron absorption?)	 Gastric acid aids reduction Fe 3+ to Fe2+ (ferrous) & formation of soluble complexes Duodenum= major site of absorption Fe3+ converted to Fe 2+ by ferric reductase Fe2+ transported into enterocytes via apical membrane iron transporter (DMT1) Dietary Heme transported into enterocyte by Heme Transporter (HT) Heme oxidase releases Fe 2+ from heme Some intracellular Fe 2+ converted to Fe 3+ & bound to ferritin Remainder binds to basolateral Fe 2+ transporter ferroportin (FP) and transported to interstitial fluid aided by hephaestin (Hp) Dietary-Phytic acid (cereals), oxalates & phosphates bind Fe to produce insoluble compounds Surgical- Partial Gastrectomy (decreased acid)/ duodenal surgery-loss or illnesses (ulcers, sprue) Physiological- high iron stores, high recent FE diet, amount of erythropoiesis Drugs-antacids, acid lowering, some antibiotics 	Pass Criteria: 2 Bold + 1 other Pass Criteria: 1 Bold
	How is Iron transported in the plasma?	Fe 2+ converted to Fe 3+ & bound to transferrin	Pass Criteria: 1 Bold
Stem: Moving onto Ph	narmacology. Oxycodone is prescribed for	her arm pain.	
Question 5 Oxycodone- pharmacokinetics and pharmacodynamics Subject:	1) Describe the pharmacokinetics of oxycodone	Good oral absorption High Vd Low first pass metabolism (cf morphine) Duration of action 3-4 hours, longer if controlled release formulation Hepatic metabolism by P450 Metabolites excreted by kidneys	Bold + 1
Pharmacology LOA: 1	2) How does oxycodone produce its analgesic effects	Opioid agonist that acts mainly on mu receptors in brain and spinal cord, but also outside CNS	Bold
	3)What strategies may be used when prescribing oxycodone to reduce the development of dependence	Establish goals at start of Rx Combine with non-opioid analgesics Smaller doses at longer intervals Use of controlled release preparations Frequent evaluation of ongoing requirements	3/5

ACEM PRIMARY VIVA A

Friday Morning Session 3 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Gliclazide	1) What type (class) of drug is Gliclazide?	A sulphonylurea.	Bold to pass
(Pharmacodynamics / kinetics) Subject: Pharm LOA: 1	2) Describe the mechanism of action of the sulfonylureas? Prompt: What ion channels are involved?	They increase the release of insulin from the pancreas (specifically from pancreatic beta cells). They bind to a receptor -> inhibition of efflux of K ⁺ ions through a linked ATP-sensitive potassium channel -> (extracellular) depolarization. The depolarization opens a voltage-gated calcium channel -> Ca influx -> release of preformed insulin. Long term use also -> reduced serum glucagon levels. Mechanism for effect unclear, but may involve indirect inhibition due to enhanced release of insulin and somatostatin which inhibit alpha-cell secretion.	To pass bold + concept of ion channels
	3) What are the pharmacokinetics of the sulfonylureas?	Hepatically metabolized to products which are inactive or have very low activity. Renally excreted. Variable (but moderate) T ½ (Gliclazide 8hrs, Glimepiride 12-24hrs, Glipizide 12-24hrs)	Bold to pass

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 2:	1) What factors influence glucose	Glucose absorption of the intestine	Name 3
Glucose	homeostasis?	Glucose uptake from the periphery – muscle, brain, fat, RBC's and liver.	mechanisms for a
homeostasis		Reabsorption in the kidney	pass.
		Gluconeogenesis in liver – actions of insulin & glucagon.	
Subject: Phys:			
	2) What happens to glucose homeostasis in	Hyperglycemia due to:	
LOA: 1	the absence of insulin?	1) Decreasing peripheral uptake of glucose into muscle and fat (direct effect).	For a pass
	Prompt if only give hyperglycaemia -By	2) Reduced glucose uptake by the liver (indirect effect)	name 2/3
	what mechanisms does this occur?	3) Increased glucose output by the liver & lack of glycogen synthesis.	consequences.
		(GIT, Renal, Brain, RBC uptake remains unaffected.)	
	3) By what mechanism does glucose cause	Specific GLUT 2 transporter in beta cells of the pancreas, converted to pyruvate,	Basic concept to
	the release of insulin?	metabolized to glutamate via citric acid cycle (CAC) which primes insulin granules for release. Production of A TP also triggers (via K efflux) Ca influx which causes granules to be released.	pass.

Stem: The patient a	asks you to look at his leg, which is painful.		
Question 3 Leg Ulcer (Photo) Clinical building block	Please describe this image. What could be the cause of this?	There are 2 areas of ulceration over the medial malleolar region of the right leg. The distal but larger ulceration has a sloughy base. The more proximal smaller ulcer has some bleeding points. Both ulcers have raised edges. There is no oedema. There is surrounding pigmentation secondary to chronic venous disease. 1) Trauma or 2) Infection on background of chronic venous disease	Pass: Bold Pass: Bold + either 1 or 2
Stem: Moving to Pa	athology. His ulcer is chronic.		<u> </u>
Question 4 Chronic inflammation Subject: Path:	1) What cell types are present in chronic inflammation?	MacrophagesMultinucleate giant cellsLymphocytesPlasma cellsEosinophilsMast cellsNeutrophil polymorphs (scarce)	Bold PLUS 2 others
LOA 1	2) What processes mediate the persistent accumulation of macrophages seen in chronic inflammation?	 Continued recruitment of monocytes (continued expression of adhesion molecules and chemotactic factors- Macrophage Activation Factor) Local proliferation of macrophages Immobilisation of macrophages (Migration inhibition factor) 	Bold to pass
	3) What clinical conditions can cause chronic inflammation? <i>Prompt: Anything other th</i> an	Persistent infection: Tuberculosis Syphilis Abscess Empyema Osteomyelitis Prolonged exposure to an agent: Exog –foreign body, persistent trauma, silica -> silicosis Endogenous – lipid -> atherosclerosis Autoimmune: Rheumatoid Arthritis Multiple Sclerosis Inflammatory Bowel Disease Systemic Lupus Erythematosus	At least 3 examples from at least 2 categories

Stem: Moving onto Anatomy				
Question 5 Foot and Ankle Model	1) What bones can you identify in this model.	Fibula + Tibia Talus Calcaneus Cuboid Navicular Cuneiforms – medial, intermediate, lateral First to fifth metatarsals, phalanges.	Bold to pass	
Subject: Anat	2) What structures make up the ankle joint?	Distal ends of the tibia & fibula, the talus + inf transverse part of post tibiofib lig.	Bold to pass	
LOA: 1	3)What movements occur through this joint?	Plantarfiexion (ext)+ Dorsiflexion (flex) of the foot.	Bold to pass	
	4)In what position of the foot is the ankle joint most unstable and why?	Plantarflexion as then the trochlea (sup surface of the talus) which is narrower post, lies relatively loosely within the mortise between the malleoli.	Bold to pass	
	<i>Extra Q if time:</i> Demonstrate the joints through which eversion / inversion of the foot occur.	Subtalar (Talocalcanean) joint, and Transverse (or mid) tarsal joint – consisting of the Calcaneocuboid + talonavicular joints.		

. .

ACEM PRIMARY VIVA A Friday PM Session 4 Candidate Number:

AGREED MARK:

-

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Metacarpal # (Xray) Clinical Building Block	Please describe the abnormality on this x-ray.	Comminuted, spiral fracture of the shaft of the 4 th metacarpal (ring finger).	Bold to pass.
Stem: Moving onto Anat	omy		
Question 2 Hand (bone) Subject: Anat	1)Please name the bones in this model.	Prox: Scaphoid, lunate, triquetrum, pisiform. Distal: Trapezium, trapezoid, capitate, hamate. Metacarpals, prox, middle and distal phalanges.	All except bold to pass
LOA: 1	2)Please demonstrate where the Dorsal and Palmar interossei muscles attach.	Dorsal –From adjacent sides of 2 MCs (bipennate) -> bases of the prox phalanges (+ ext expansions of 2 nd -4 th digits). Palmar – From palmar surfaces of 2 nd , 4 th & 5 th MCs (unipennate)-> bases of prox phalanges (+ ext expansions of digits 2,4+5).	To pass: MCs -> phalanges Dorsal bipennate
	Extra if time: What do the interossei muscles do	Palmr adduct/Dorsal abduct digits around axial line. Flex MCPJ & extend IPJ.	Palmar unipennate
Stem: Moving on Pathol	ogy. He has multiple wounds which are b	leeding.	
Question 3 Haemostasis, platelet aggregation Subject: Path LOA: 1	1) What is the sequence of events that occurs to produce haemostasis after a vascular injury. Prompt: What happens first?	 1) Vasoconstriction: arteriolar, reflex neurogenic, enhanced by endothelin 2) Primary haemostasis: extracellular matrix exposed, platelet adherence/activation platelets aggregate & forms a plug 3) Secondary haemostasis: Tissue factors exposed, Fac III, thromboplastin, Fac VII, platelet plug consolidated – thrombin/fibrin generated 4) Thrombus & antithrombotic effect – fibrin polymerises to form permanent plug, tPA regulates 	To pass identify 3/4 steps & demonstrate understanding of concepts To pass identify test, what
	2) What laboratory tests are used to assess the function of the different pathways of the coagulation cascade? <i>Prompt: Which one is vitamin K dep.</i>	 Prothrombin time – extrinsic pathway factors VII, X, II, V, fibrinogen (including vit K dependent factors) Partial thromboplastin time – intrinsic pathway factors XII. XI, IX, VIII, X, V, II fibrinogen 	pathway it is testing & identify which one is vit k dependent.

		IV admin only. Rapid onset/recovery due to redistribution from brain->	Bold with
Question 4	1) Please describe the pharmacokinetics of propofol?	skeletal muscle-> fat, rather than metabolism.	reasonable
Propofol (Pharmacokinetics and		Distribution t ½ 2-4 mins	understanding
Pharmacodynamics		Elimination t ½ 4-23 mins	of drug
Filatinacodynamics		Duration of action 3-8 mins	redistribution
Subject: Pharm		Metabolism- rapidly in liver, some extra-hepatic (lung)	
Jubjeen mann		Excretion - Urinary as glucuronides & sulphates, < 1% unchanged	
LOA: 1			
	2) What are the adverse effects of	Hypotension- vaso/venodilatation and -ve inotropic effect	Bold
	propofol?	Apnoea- dose-related central depression of respiratory drive.	
		Pain on injection	4
		Soy/egg allergy	
	3) How can you limit adverse effects	Caution with simultaneous co-administration of opiates/benzodiazepines.	Any 2
	when using propofol?	Titrate small doses (10-20mg aliquots) slowly to effect.	
	When using proporois	Reduce doses in the elderly or with poor cardiovascular reserve.	
		Caution with haemodynamically unstable patients	
Stem: Moving on to Phys	iology. His blood pressure falls to 80/40.	Blood loss is a contributory factor	· · · · · · · · · · · · · · · · · · ·
Question 5 Physiological responses to shock	1) What is hypovolaemic shock?	Systemic hypoperfusion due to reduced effective circulating blood volume resulting in impaired tissue perfusion and cellular hypoxia.	Bold to pass
U SHOCK	2) What are the physiological	Rapid (S <u>econds/minutes)</u>	Bold to pass
	compensatory reactions to	-Baroreceptors (decreased discharge with reduced arterial stretch, reducing	with
Subject: Phys	hypotension in acute blood loss?	the baroreceptor inhibition in medulla -> increased sympathetic discharge	understanding
LOA: 1		with vasoconstriction, venoconstriction and tachycardia)	of baroreceptor
	Prompt: What are the immediate	-Chemoreceptors (stimulation leads to peripheral vasoconstriction and rise	and renin
	responses?	in BP)	angiotensin
		-CNS receptors	function.
		Early (Minutes/hrs): Renin-angiotensin system activated	
		-Blood volume changes	
		-Capillary fluid shifts (isolovaemic anaemia)	
	Prompt: What about intermediate or	Longer term: Renal compensation via aldosterone	
	longer term?	- Renin- angiotensin system	
			- I
		- Blood volume changes	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Acute Pericarditis Subject: Pathology LOA: 2	Describe the characteristic clinical fea- tures of pericarditis	Chest pain (dull or sharp, pleuritic, positional), fever, congestive failure, pericardial friction rub Constrictive pericarditis: distant or muffled heart sounds, elevated JVP, peripheral edema.	2 Features to pass Prompt "History and examina- tion features?"
	What are the causes of pericarditis?	Infectious: viral, pyogenic bacteria, TB, fungal Immune mediated: Rheumatic fever, SLE, Sclero- derma, post cardiotomy. Post MI (Dressler's), Drug hypersensitivity reaction. AMI, uraemia, post cardiac surgery, neoplastic, trauma, radiation	Need viral, immune example and one other
	What types of pericardial fluid exudate occur?	 Serous: usually non-infectious inflammation (RF, SLE), but also viral, uraemia, tumours Fibrinous/serofibrinous; (most common) post MI, Dressler's, trauma, post surgery but also as in Purulent/suppurative: almost always bacterial invasion from local infection, lymphatic or blood seeding, or at operation Haemorrhagic Caseous (TB) 	2/5 types to pass

Stem: Moving onto P	hysiology.		
Question 2 Electrical activity of the heart / atrial ar- rhythmias Subject: Physiology LOA: 1	Please draw and describe a normal ECG complex. Describe the normal sequence of elec- trical excitation of the cardiac conduc- tion system and cardiac muscle	A Alexandrom and the set of the s	Draw ECG and accurately iden- tify all waves and intervals (P,PR, QRS, T, QT & ST) Prompt – Intervals?
		P = Depolarization initiated in the SA node Spreads radially through the atria, Converges on the AV node. (Atrial depolarization 0.1 s.) PR = Atrial depolarization & AV nodal delay (Delay of about 0.1 s) QRS = Bundle of His, R&L Bundles & Purkinje fibers (ventricles 0.08-0.1 s) (L) to (R) across IV septum then down septum to apex along ventricular walls to AV groove from endocardial to epicardial surface last parts to be depolarized are posterobasal portion of LV, pulmonary conus, and uppermost septum	Bold to pass 2 depolarization directions to pass

Stem: She develops p	alpitations. An ECG is done		
Question 3 ECG – SVT Clinical Building Block	Please describe this ECG.	12 Lead ECG, standard calibration and assume standard paper speed. Axis (N), Rate ~220, Essentially Regular Rhythm, no P waves visible QRS morphology: no Q-waves, good R-wave pro- gression, wide spread ST depression (up to 3 mm), T-waves upright (except aVR & V1), no fusion or capture beats, no A-V dissociation	Rate (>200) Rhythm and 2 more features
	What is the diagnosis?	Narrow complex tachycardia (SVT)	Bold to pass
Stem: Moving onto Ph	narmacology. You plan to treat her with Ad	denosine.	
Question 4 Adenosine Subject: Pharmacol- ogy	What is adenosine and how does it work?	Naturally occurring nucleoside Blocks AV conduction (activates inward rectifier K+ current, ie hyperpolarises the AV node)	Bold to pass
LOA: 1	Describe its pharmacokinetics	Short ½ life (less than 30 seconds) Uptake by endothelial and red cells	Bold
	What are its side effects?	Chest tightness / burning, flushing, headache, nau- sea, hypotension, parasthesiae, arrhythmia, bron- chospasm, "sense of impending doom" ODD	4 of 9
	What are the possible drug interactions with adenosine?	Theophylline inhibits - Adenosine receptor blocker	1 of 3
		Dipyridamole enhances - Adenosine uptake blocker	
		Interaction with other AVN b locking drugs	

Stem: Moving onto A	Stem: Moving onto Anatomy. You insert an Intravenous line.				
Question 5	Identify the superficial veins	1 Basilic vein	Bold plus 1 vein		
Cubital fossa (photo		6 Cephalic vein			
from Mc Minns)		13 Median cubital vein	Prompt – point		
		14 Median forearm vein	Show candidate "medial"		
Subject: Anatomy					
	Identify other neurovascular structures	15 Median Nerve			
LOA: 1	in the cubital fossa	4 Brachial artery			
		22 Ulnar artery	Bold plus 1		
		21 Radial artery			
	Identify the tendons at the wrist	9 FCU			
		10 FDS	4 of 6		
		18 Palmaris longis			
		8 FCR			
		11 FPL			
		S Brachioradialis			
	Which structures lie deep to flexor reti-	FDS, FDP. FPL, median nerve (+/- FCR, debatable)			
	naculum at the wrist?		3 of 4		

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 STEMI ECG Clinical Building block	Please describe this ECG.	12 lead ECG, (no calibration for paper speed or rhythm strip) ST elevation in anterior leads reciprocity (infero-lateral TWI and ST depression) Rate 90 (80-100) SR LAD PR160 (140-200) QRS 100ms (80-120) QT 360ms (320-400)	Bold + 4 others (of 8) Don't need to count mm of STElevation Accept normal if within range
	What is the diagnosis?	Ant STEMI	Bold
Stem: Moving onto	Pathology.		
Question 2 Acute coronary syndromes Subject: Pathology LOA: 1	1. Describe the pathogenesis of My- ocardial infarction due to athero- sclerosis	 Acute plaque change Rupture / fissuring Erosion / ulceration Haemorrhage into atheroma Thrombosis Platelet adhesion, aggregation & micro-thrombi formation Platelet release of mediators causing vasospasm Activation of coagulation pathway leading to thrombus Vasoconstriction stimulated by: Circulating adrenergic agonists Locally released platelet contents Endothelial cell dysfunction causing decrease NO d. Perivascular inflammatory cell mediators Vessel occlusion leading to: decreased myocardial blood flow myocyte necrosis 	3 of 4 Bold and demon- strate understanding of processes "Can you describe the pro- cess" – for each bold

	2. What are the complications of acute myocardial infarction?	 Contractile dysfunction LVF / RVF / cardiogenic shock Arrhythmias Myocardial rupture Free wall / Vent septum / Pap muscle Ventricular aneurysm Pericarditis/effusion/tamponade Mural thrombus Papillary muscle dysfunction 	3 to pass
Stem: Moving onto f	Physiology		<u> </u>
Question 3 Cardiac cycle - ven- tricular volume re- lationship to ECG	Describe how the waveforms of an ECG relate to the cardiac cycle	Atrial systole starts just after the P wave Ventricular systole starts near the end of the R wave and ends just after the T wave	Bold concepts to pass Prompt – how do the waveforms relate to atrial and ventricular systole
Subject: Physiology LOA: 1	Describe the changes in left ventric- ular volume through the cardiac cy- cle starting from atrial systole	 Atrial systole Phase 1 – P to R wave Small amount of increased ventricular filling due to atrial contraction Ventricular systole: Phase 2 = isovolumetric contraction – R wave to ST segment (130ml) Mitral valve closes Ventricular contraction occurs with no change to volume Phase 3 = ventricular ejection ~ ST segment to end T wave (65ml at end) Aortic valve opens Ventricular systole Diastole: Phase 4 = isovolumetric ventricular relaxation Aortic valve closes Phase 5 = ventricular filling 	Bold concepts to pass Prompt – During atrial sys- tole, what happens to ven- tricular volume

Question 4		Oral or IV, Well absorbed	Bold and 2 others to pass
Metoprolol	Describe the pharmacokinetics of	Bioavailability 50% due to fi rst-pass effect	
metoproioir	Large volume of distribution (>200L)		
Subject: Pharm LOA 1	Why is this so?		
		Half-life, 3-4 hours	
		Metabolised in the liver	
	What are the cardiovascular effects of metoprolol?	1 Negative inotropic and chronotropic effects	Bold and 1 to pass
		2 Slow a-v node conduction with increased PR on ECG	
		3 decrease BP by a mechanism not fully understood but probably includes suppression of renin release and CNS ef- fects	
	How does metoprolol differ from	B1 equipotent	1
	propranolol in its action at beta re-	B2 50-100 fold less potent	Bold to pass
	ceptors?	ie metoprolol is B1 specific and propranolol is not (equipo- tent at B1 and B2)	
		metoprolol at higher doses is less specific	

Stem: Moving onto	Anatomy		
Question 5 Heart (model) – coronary supply	1. Using the model, identify the great vessels which enter and exit the heart	Ascending aorta Superior vena cava, IVC Pulmonary trunk / pulmonary arteries Pulmonary veins	(Bold to pass) Prompt - point
Subject: Anatomy			
LOA: 1	Identify the arteries that supply of the heart	Coronary arteries arise from the aortic sinuses Left (Main) Coronary artery	Bold + 1 to pass
		Left anterior descending	Prompt to LCA, where does
		Diagonal branches Circumflex	the LAD arise from?
		Marginal arteries	
		Right Coronary artery	
		Posterior descending (interventricular) artery	
	3. Which areas of the heart are supplied by the Left	Most of le ft atrium Most of left ventricle	Bold + 1 to pass
	Coronary Artery and its	Part of right ventricle (anterior wall)	prompt - What part of the
	branches?	Interventricular septum	conducting system does it
		Ventricular apex	supply?
		AV Bundle (His)	
		SA node in 40% (from circumflex)	
		Inferior border lies on the diaphragm	
	BONUS Q: Describe the position of	Apex is in the 5 th intercostal space	
	the heart in the left Hemithorax	Base is against the thoracic vertebrae (T6 –T9)	

imber:

Pass criteria: Must be able to draw or describe the curve and correctly label/discuss the axes and the dotted lines
Prompt - describe
For a pass: 2 positive factors with correct influence
2 negative factors with cor- rect influence Does anything move the curve LEFT/RIGHT?

Question 2	 Pathology. He has multiple track marks and 1. What factors predispose to infective 	Cardiac Factors – Degenerative mitral valve pro-	4 to pass (2 from each group)
Endocarditis	endocarditis?	lapse (myxomatous), calcific aortic stenosis, bicus-	
Subject:		pid aortic valve, prosthetic valves, congenital	Prompt "Any other factors for
Pathology		valve defects, rheumatic heart disease	infective endocarditis in
		Host Factors – Bacteraemia (dental or surgical	general?"
LOA: 2		procedure, loss of skin integrity), Intravenous	
		drug use, immunodeficiency, drug induced immu-	
		nosuppression, malignancy, neutropaenia, diabe-	
		tes, alcohol	
	2. Which organisms commonly cause	Streptococcus viridans, Staph aureus, staph epi-	Bold + 1 other to pass
	infective endocarditis?	dermidis, enterococci, gram negative bacilli,	
		HACEK (Haemophilus, Actinobacillus/Aggregati-	
		bacter, Cardiobacterium, Eikenella, Kingella);	
		Fungal	
	3. What are the complications of infec-	Local – erosion/destruction of tissue (valve or my-	1 local and 1 systemic to pass
	tive endocarditis?	ocardium, abscess formation (ring abscess)	
		Systemic – Septic infarcts – brain, lung, kidneys,	Prompt "Any local/systemic
		mycotic aneurysms. Embolic phenomena – Subcu-	complications"
		taneous tissues (splinter haemorrhages, janeway	
		lesions, oslers nodes) Retina (roth spots)	
		Glomerulonephritis (immune mediated)	
Stem: Clinical bui	lding block. A CXR is performed.	· · · · · · · · · · · · · · · · · · ·	
Question 3	Describe and interpret this Xray?	Left sided pleural effusion	BOLD + organized approach to
X-ray with large		Cardiomegaly (but limited inspiration)	describing whole Xray
pleural effusion		Sternal wires – previous sternotomy	
		Blunting right costophrenic angle	
Subject CBB		Calcification of aortic arch (en d on)	
	What is your differential diagnosis	Congestive cardiac failure, Empyema	2 Causes
		Pneumonia, PE, Cirrhosis/nephrotic syndrome	

	Anatomy. You decide to drain his pleural e		(Candidate to use photo to
Question 4	Describe the surface anatomy of the	Apices of both lungs begin in supraclavicular	demonstrate surface anat-
Surface anatomy	lungs and the pleura	fossa	omy/pleural reflections)
of the chest / pleu-		Lungs and visceral pleura run parasternal to 6 th	omy pieurar renections)
ral reflections		costal cartilage on R ,4 th costal cartilage on L,	4 of 6 bold
(photo)		then pass laterally to MCL 6 th rib, MAL 8 th rib,	4 01 8 0010
Subject: Anat: LOA: 1		SL (scapular line) at 10th rib , T 1 0, then paraverte- brally to T12	
		(in contrast to parietal pleura which is at MCL at	Understanding of left and R
		8 th rib, MAL at 10 th rib and SL at 12 the rib (2 ribs	variance
		below)	Understanding of parietal vs
			visceral pleura (2 ribs below)
		Oblique fissure – spinous process T2 posteriorly –to 6th costal cartilage an-	
		teriorly Horizontal fissure - R – from oblique fissure at level of 4 th rib to costal carti-	
		lage	
	What are the anatomical structures to	Above the rib below to avoid neurovascular bun-	Bold plus 1 to pass
	consider when inserting a lateral inter-	dle	
	costal catheter	Above Sth - 6 th intercostal space to avoid dia-	Prompt "What are the borders
		phragm (nipple line)	of the triangle of safety?"
		Anterior to mid axillary line or lat dorsi	
		Posterior to pect major	<u> </u>

	o Pharmacology. Lignocaine is used as the loc		
Question S	Describe the mechanism of action of Lig-	Na channel blocker, Class 1 B	Bold to pass
	nocaine?	Blocks (activated and inactivated Na Channels =	
Lignocaine		blocks nerve conduction.	
Subject: Pharm		Less effect in infected tissue	
LOA: 1			
	What are the toxic effects of lignocaine?	CNS – Early : tongue/oral numbness/metallic	3 BOLD to pass
		taste. Nystagmus, muscle twitching, N+V, Tinni-	
		tus, visual disturbance. Severe: Seizures, seda-	Prompt "Any other systems
		tion.	affected?"
		CVS – cardiovascular collapse, hypotension, brad-	
		ycardia, arrhythmia (rare), worsen CCF, conduc-	1
		tion blocks	
		GIT – anorexia, N+V (through CNS effects)	
	What factors affect systemic absorption	Dose, site of injection, drug tissue binding, tissue	
	after local infiltration?		
		blood flow, vasoconstrictors (combined prepara-	2 of F
		tion)	3 of 5

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Hypertension	How is hypertension classified?	Primary (essential) Secondary	Bold
Subject: Path			
•	What are the causes of secondary hyper-	Renal (Acute glomerulonephritis, Chronic renal	6 examples from at least 3 dif-
LOA: 2	tension?	disease, Polycystic disease, Renal artery stenosis, Renal vasculitis, Renin-producing tumors)	ferent systems.
			Prompt "Diseases in what
		Endocrine (Adrenocortical hyperfunction [Cushing syndrome, primary aldosteronism, congenital adrenal hyperplasia, licorice ingestion], Exogenous hormones [glucocorticoids, estrogen {including pregnancy-induced and oral contracep- tives}, sympathomimetics and tyramine-containing foods, monoamine oxidase inhibitors], Pheochromocytoma, Acromegaly, Hypothyroidism, Hyperthyroidism, Pregnancy-induced	(other) systems cause second- ary hypertension?"
		Cardiovascular (Coarctation of aorta, Polyarteritis nodosa,, Increased intravascular volume, In-	
		creased cardiac output, Rigidity of the aorta.	
		Neurologic (Increased intracranial pressure, Sleep apnea)	
		Psychogenic (Acute stress, including surgery, Pain)	

Stem: Moving on to	Pharmacology. She was recently commence	ed on Irbesartan.	
Question 2 Angiotensin recep-	Describe the pharmacodynamics of irbesartan	Competitive selective antagonist of the AT1 re- ceptor.	Bold
tor blockers includ- ing Pharmacody-		Vasodilation, inhibition of aldosterone secretion	And 1 of 2
namics	What are the benefits over ACE inhibitors	No effect on bradykinin so reduced incidence of cough, angloedema	Bold
Subject: Pharm		More complete inhibition of actions of angiotensin 2 compared to ACE inhibitors	
LOA: 2		May increase angiotensin 2 which then has actions on AT2 receptors- vasodilation, additional benefit	
	What are specific contraindications	Non-diabetic renal failure Pregnancy Allergy/previous adverse reaction	2 of 5
		Hyperkalaemia, Renal artery stenosis	
Stem: Moving onto	Physiology		
Question 3 Renin angiotensin system Subject Phys	1 What leads to activation of the renin- angiotensin system. Prompt "List some conditions which acti- vate the renin-angiotensin system"	Activated in response to decrease in BP/ ECF or increased sympathetic activity eg hypotension, haemorrhage, dehydration, car- diac failure, cirrhosis, Na depletion, diuretics, up- right posture, pain, fear, arousal	Bold + 4 conditions
LOA: 1	2 What are the principal effects of angio- tensin II?	Arterioles (AT1 receptor) – vasoconstriction – in- creases TPR	Bold to pass
	Prompt Where does angiotensin II act?	Adrenal cortex - increase aldosterone production – increased Na and H2O resorption	Prompt "What causes that or what effect does that have?"
		Kidney – direct effect to decrease GFR and in- crease Na reabsorption	
		Brain – decreased sensitivity of brain baroreceptor reflex – potentiates pressor effect Pituitary – increase ADH and increase ACTH	
		scretion	

Stem: An ECG is peri	formed.		
Question 4 Left ventricular hy-	Please describe the ECG	Sinus Rhythm Rate around 75/minute	Bold + 2 others
pertrophy		Left axis deviation Normal PR interval	Prompt – What do you think about the size of the QRS in
Clinical Building Block		Large QRS voltage with broad QRS (Voltages – 5 wave in V2 + R wave in V6 >>35 mm) ST elevation V1-3 LV strain (ST depression/T wave inversion) in	some of the leads?
	What is the likely cause of the ECG ab- normalities?	leads I, aVL, V5, V6 Left Ventricular Hypertrophy	Bold

Stem: Moving on to	o Anatomy. A CXR is performed.		
Question 5 CXR (mediastinal structures and boundaries) Subject: Anat LOA: 1	Outline the structures that make up the right and left cardiomediastinal borders on this X-ray (you can point on the Xray)	Right - Right brachiocephalic vein - Superior vena cava - Right pulmonary trunk - Right Atrium - Inferior vena cava Left - - Left subclavian artery/left brachiocephalic vein - Aortic arch - Left pulmonary trunk - Left pulmonary trunk - Left pulmonary trunk	6/10 to pass
	Describe the lobes of the lungs and their fissures.	 Both lungs: oblique fissures separate upper and lower lobes (T2 posteriorly to 6th costal cartilage ant) Right lung – upper and middle lobes separated by the transverse fissure (at level of right lung hilum along line of 4th rib) Left lung – prominent cardiac notch in lower lobe 	Bold to pass Bold to pass
	Which part of the lung forms the right heart border?	RML	Bold

ACEM PRIMARY VIVA C Thursday Morning Session 1 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	
Question 1 Stretch reflexes Subject: Physiology LOA: 2	1. Please describe the components of the stretch reflex:	 Monosynaptic; skeletal muscle stretched with contraction muscle as the response Stretch receptor sensory neuron makes an excitatory connection with the extensor motor neuron of the same muscle and an inhibitory interneuron projecting to the antagonistic muscle. Sense organ is muscle spindle. Impulses from spindle are transmitted to the CNS by fast sensory fibres that pass directly to the motor neurons that supply the same muscle. The neurotransmitter at the central synapse is glutamate. 	Simple explanation +/- diagram
	2. What is a typical example of this?	Eg The Knee jerk	Bold

Stem: Moving onto	Pharmacology. She has another seizure and	is given Midazolam.	
Question 2 Midazolam including pharmacokinetics Subject: Pharmacology	1. What are the pharmacokinetics of Midazolam?	 -Water soluble hence oral/IM/intranasal -Poor oral bioavailability -Highly Protein Bound -Crosses BB barrier easily at body pH. -Short elimination half-life 1.5-2.5 hours. -hepatic metabolism/renal excretion 	2/4 Bold
LOA: 1	2. What is the mechanism of action of midazolam?	 2Binds to GABA-A receptor (or complex) -Potentiates GABAergic inhibition through hyperpolarization (through Chloride) -Acts throughout brain 	Bold
	3.What are the clinical effects of midazolam?	 3Strong amnestic effect -Anticonvulsant -Anxiolytic -Sedative-hypnotic -Antiemetic -Reduced sensitivity to CO2 	2 other than anticonvulsant
Stem: Moving onto	Anatomy. You notice eye deviation during t	he seizure	_ .
Question 3 Eye (model) Subject: Anatomy LOA: 1	Name and identify the extrinsic muscles of the eye What is the innervation of each muscle?	Superior rectus(III oculomotor)Inferior rectus(III oculomotor)Medial rectus(III oculomotor)Lateral rectus(VI abducent)Superior oblique(IV troclear)Inferior oblique(III oculomotor)(Superior, medial, inferior and lateral rectus arise from common tendinous ring (surrounding optic canal)Superior oblique arises from the body of the sphenoid, passes forward above the medial rectus and gives way to a slender tendon which passes through the trochlea (pulley). Then turns backwards and laterally and passes under the sup rectus to insert into posterosuperior lateral quadrant of sclera.	Bold

Stom: Sho has a wid	What movements are generated by these muscles ? [Bonus Prompt : What muscles make the eye look directly up?]	Inferior oblique arises from maxilla on the floor of the orbit near ant margin. Passes obliquely backwards and laterally below inferior rectus and curves up deep to lateral rectus to be attached in posteroinferior lateral quadrant) MR – medial (horiz plane) LR- lateral (horiz plane) SR – inserted in front of coronal equator, and line of pull is medial to axis of rotation, therefore up and in IR – same, down and in IO – up and out SO – down and out IO plus SR – up SO plus IR – down	4/6 bold
Question 4	espread rash and she is not immunised Describe and interpret the rash.	Diffuse maculo(papular) rash	Bold
Photo – mac / pap rash Clinical Building Block	What could be causing the rash in this scenario?	Likely viral eg measles, rubella	
Stem: Moving onto	Pathology. Measles is suspected.		
Question 5 Measles Subject: Pathology	What type of virus is Measles?	Single stranded RNA virus , a member of the Paramyxovirus family (Mumps, RSV and Paraflu). There is only one strain of virus – so preventable by vaccine.	1 Bold to pass
LOA: 2	How is it spread?	Respiratory droplet spread.	Bold
	Describe some of the clinical manifestations of Measles infection.	Viral pneumonia (60% of deaths) Conjunctivitis and Keratitis – scarring and blindness Acute Measles Encephalitis (1:1000) Adults> kids Subacute sclerosing panencephalitis (1:100000)	Encephalitis and 1 other
	[What are the serious manifestations?]	Diarrhoea (enteropathy) Immunosuppression Croup	

reinfection			the rash – a hypersensitivity reaction to viral antigens in the skin. (no rash if deficient cell mediated immunity) Antibody mediated immunity to Measles virus protects against	Bonus
-------------	--	--	--	-------

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
respiratory acidosis Clinical Building Block		ABG on room air pH 7.25 – acidaemia pCO2 - 65 – elevated – respiratory acidosis HCO3 - 33 – elevated – metabolic compensation (chronic) pO2 / SaO2 decreased – hypoxia	Bold to pass
Stem: Moving onto Question 2 Alveolar gas equation Subject: Phys LOA: 1	What are the causes of hypoxaemia in general? [What are the lung related causes?] [can you give examples?] [How does that pathology cause hypoxaemia?]	 Hypoventilation: Eg Drugs – Morphine/ barbiturates/ Chest wall damage/ Resp m. paralysis Diffusion limitation: Impaired diffusion process of oxygen across the Pulmonary capillary Eg Exercise/ thickened blood gas barrier state, Low O₂ mixture inhaled Shunt: Shunt refers to blood entering the arterial system without going through ventilated areas of the lung.Eg: Abnormal vascular connection (AV fistula/ CCHD defecet in R/L sides of heart). Ventilation – Perfusion inequality most common. Vent/Perfusion ratio determines gas exchange for any Resp unit. Regional variance exists. Hypoxaemia caused by V/Q mismatch cannot be eliminated with increased ventilation. Eg Pulmonary Embolism 	3 of 4 Bold + 2 examples altogether

	What is the Alveolar gas equation?	Useful formula to measure the relationship between the fall in PO_2 and the rise in PCO_2 that occurs in Hypoventilation. Alveolar arterial difference (A/a gradient) – a useful measure of the V/Q inequality.	Describe formula			
	[Prompt: What is the calculation?]	PAO2= PIO ₂ - <u>PACO</u> ₂ +F R Where: PAO ₂ = Alveolar Oxygen partrial pressure PIO ₂₌ Partial pressure Inspired (dry) Oxygen: FIO ₂ less 47 mmHg Water Vapour (~ 149mmHg) when FiO2 21% and 760 mmHg. PACO ₂ = Measured PaCO ₂ R= Respiratory Quotient is the given CO2 production/ O2 consumption determined by the metabolism at steady state. Typically 0.8. Also called Respiratory Exchange ratio. F is a small correction factor for inert gases (typically 2mm Hg and can be ignored).	Define all Bold terms.			
	How is it used clinically? (Bonus)	A/a gradient calculated by subtracting the measured PaO ₂ (arterial) from the calculated PAO ₂ .	Bonus			
Stem: Moving onto Pharmacology. He has a seizure and is loaded with phenytoin.						
Question 3 Phenytoin – pharmacokinetics	Describe the pharmacokinetics of Phenytoin	High oral availability (90%), poor IMI Peak serum concentration 3-12hrs later Highly plasma protein bound (90%) Vd 45L/70kg (brain, liver, mm, fat)	Bold to pass incl. concept of dose-dependent elimination			

S	harmacokinetics ubject: Pharm OA 1		Vd 45L/70kg (brain, liver, mm, fat) Elimination is dose-dependent (capacity limited / nonlinear / saturable elimination) At low blood concentrations first order kinetics; at higher blood concentrations – hepatic enzymes saturated – elimination slows t1/2 variable (12-36hrs) as a result Metabolised to inactive metabolites by the liver then urinary excretion (< 2% excreted unchanged)	
		What is the rationale for using a loading dose of phenytoin?	Otherwise need 4 half lives to get to steady state, so reach target concentration more rapidly Dose = VolumeDist x TargetConc	Bold or Concept

Stem: Moving onto	anatomy. There is concern for cervica	l spine injury.	
Question 4 C1/2 (bone)	Identify the features of this bone.	C2 or axis: Body, dens, superior and inferior articular facets, lamina, pedicle, transverse process, transverse foramen, bifid spinous process, vertebral foramen	ID the bone and dens + 4
Subject: Anatomy			
LOA: 1	Describe the joints between C1 and C2	 2 x Lateral atlanto-axial joints (facet joints) are synovial joints, between inferior articular facet of atlas and superior articular facet of axis each side. Lax capsule Median atlanto-axial joint: synovial joint between anterior arch of C1 and dens – a pivot joint. 	bold
	Which ligaments stabilise the joints between C1 and C2?	Cruciate or cruciform ligament –made up of STRONG transverse lig across atlas behind dens (bursa between) and WEAKER vertical bands from back of body of axis posterior to dens to basiocciput (bypass atlas) Holds dens in position and prevents pressure from dens on medulla <u>Alar (x2) ligaments</u> from sides of dens to the edge of foramen magnum. Strong and limit rotation (with weak apical lig from apex dens to FM) <u>Tectorial membrane</u> is a continuation of post longitudinal ligament, attached from back of body of axis to ant half of FM. Lies in front of dura	Must know cruciate + 1 other

Stem: He has multiple	Stem: He has multiple fractures. Moving onto Pathology.					
Question 5 Fracture healing Subject: Pathology LOA 1	1. How are fractures classified	 Complete/incomplete Open/Closed Comminuted Displaced Pathologic Stress 	3/6			
	2. Describe the steps in fracture healing	 Haematoma fills fracture gap – provides fibrin mesh framework (hours) Influx of inflammatory cells, fibroblasts, new vessels (days) Haematoma organising -> Procallus Ossification -> bony callus (2-3/52) Callus matures, remodelling (6 weeks) 	 4 of 5 steps Logical sequence 			
	3. What factors can impede the healing of fractures	 Inadequate immobilisation Marked displacement/soft tissues Vascular compromise Infection (open fractures/foreign bodies) Systemic factors (nutrition, osteoporosis, smoking) 	BOLD and 1 other			

ACEM PRIMARY VIVA C

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	What organisms cause malaria?	Malaria is a protozoal infection, intracellular parasite	Parasite or protozoa
Malaria	Name the types	Plasmodium	P falciparum + 1
	[What sort of organism is that?]	P falciparum, P ovale, P vivax, P malariae	
Subject: Path			
	Describe the pathogenesis of	Infectious stage (sporozoite) is found in saliva of female	Bold and general idea
LOA: 1	malaria	anopheles mosquito. Sporozoites released into blood and	
		attach and invade hepatocytes . Multiply rapidly. Hepatocyte	
		ruptures, releasing up to 30000 merozoites	
	[What happens next?]	(NB P vivax and ovale have dormant hepatic stage therefore	
		can relapse).	
	[What does it do to the blood?]	Released merozoites from liver bind to surface of RBC , grow in	
		vacuole. In RBC become trophozoite (single chromatin), then	
		schizont (multiple chromatin masses) then each chromatin	
		becomes merozoite again. RBC lyses and new merozoites	
		infect additional RBCs. Only erythrocytic parasites cause illness	
	How does P falciparum present	Fever, severe anaemia, ARF, cerebral symptoms, pulm	Fever + 1
	clinically?	oedema, DIC	
		Congestion and enlargement of spleen	
		Infected RBCs clump \rightarrow ischaemia due to poor perfusion \rightarrow	
		manifestations of cerebral malaria (vessels plugged with	
		parasitized RBCs, local venous stasis, local hypoxia and	
		inflammatory infiltrate)	
		ARF (Hb casts in tubules, pigment etc in glom)	
		Stimulates cytokines, TNF, IFN, IL1 \rightarrow pulm oed, fever, shock	

Question 2	Describe the abnormality on this CT	Axi	al non-contrast CT brain	CTcereb8.jpg
Brain CT	image?	Hyperdense oval area right cerebellar hemisphere –		Describe abn
Subject: CBB		haemorrhage +/- surrounding oedema		
Stem: Moving onto	<u>)</u> Anatomy.	1		
Question 3	1. Describe the ventricular system of	Lat	eral Ventricles (ant/ post and inf horns) = largest	Can use same CT scan
CNS Ventricular	the brain.	ead	ch opens into 3 rd via interventricular foramen	
system		3rd	ventricle = slit like btw diencephalon halves	Must get 4 ventricles and
	[What connects the third and fourth	Co	ntinues as cerebral aqueduct (post-inf) which connects 3 rd	cerebral aqueduct to pass
Subject: Anat:	ventricles?]	and	d 4 th	PLUS some additional
		4 th	ventricle = pyramid shaped, post part of pons and medulla.	information (i.e. location in
LOA: 1		Ta	pers, continuous central canal	brain, size/shape)
	2. Outline CSF flow in the brain. (if	CSI	F secreted by choroid plexuses in ventricles	2 Bold
	not already covered in 1)			
	1		eral (2) apertures. It then passes to the subarachnoid space	
		– n	nultiple cisterns	
Stem: Moving onto	Pharmacology. She has been taking do	хусу	cline for malaria prophylaxis	
Question 4	1. What is the mechanism of action of	f	Protein synthesis inhibitor - Binds reversibly to 30s	Bold
Doxycycline	doxycycline?		subunit of ribosome (bacteriostatic)	
Pharmacodynamic			In malaria inhibits protein synthesis	
S	[in general?]		Active against erythrocytic schizonts of all malaria	
Subject: Pharm:			parasites	
			Used for prophylaxis. Not used as single agent in	
LOA: 2			treatment – slow and not active against liver stages	
	2. What are the side effects of		GI – nausea and vomiting	3 of list to pass including 1
	doxycycline?		Photosensitivit y	of photosensitivity and
			Candidal vaginitis	teeth
	[Specifically for doxycycline?]		Hepatotoxicity	
			Discolouration teeth & bones (binds to calcium in newly	
			forming bone/teeth - in pregnancy & children <8 years old)	
			Intracranial hypertension	

	3. Other than malaria what are the other indications for doxycycline?	Respiratory tract infections STI's (eg Chalmydia, syphilis) Skin infections (eg acne) Rickettsia (eg. Q fever) Vibrio species (eg. Cholera) Antihelminthic Anthrax Gram negatives (rarely)	2 to pass
Stem: Moving ont Question 5	o Physiology. Her respiratory rate falls. 1. What parts of the brain control	1Cerebral cortex for voluntary control	Bold
Control of ventilation	respiration?	-Medulla for automatic control (driven by pacemaker cells in the pre-Bötzinger complex)	
Subject: Phys: LOA: 1	2. What stimuli affect respiration?	 <u>Chemical control</u>: chemoreceptors <u>CO₂</u> (readily penetrates the BBB and enters CSF and brain interstitial fluid H⁺ concentration), promptly hydrated and H+ ions increase - chemoreceptors in medulla sensitive to changes in H⁺ Increase in H+ conc in CSF stimulates ventilation 	Bold + concept for CO2/O2 regulation + 1 non-chemical control
	[Prompt for Chemical or non-chemical control]	Some CO ₂ regulation via carotid/aortic bodies $-O_2 / H^+$ (via carotid/aortic bodies) $\downarrow O_2$ results in \uparrow glomus cell activity in carotid/aortic bodies Fast response to decreased O2 Dec pH causes response in carotid body only.	
		Nonchemical control -vagal afferents from pulmonary stretch receptors -afferents from pons/hypothalamus/limbic system -afferents from proprioceptors in mm, tendons, jts -afferents from baroreceptors: arterial, atrial, ventricular, pulmonary	

•

3. How does hypoventilation affect respiration? [Bonus Question]	 3. BBB is permeable to CO₂; relatively impermeable to HCO₃⁻ 	General concept of bolded
Prompt: What is the role of H+ ions?	↑ blood pCO ₂ → ↑CSF pCO ₂ →↑ H ⁺ in CSF→ stim vent	
	\uparrow H ⁺ in CSF stimulates ventilation \downarrow H ⁺ in CSF inhibits ventilation; causes cerebral	
	vasodilatation \rightarrow enhance diffusion of pCO ₂ into CSF	

Г

Candidate Number:

AGREED MARK:

Stem: A 50-year-old v	woman is given Ceftriaxone for septic shock. Star	ting with Pharmacology.	
ΤΟΡΙϹ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Q uestion 1 Ceftriaxone	What kind of antibiotic is ceftriaxone? [What group?]	Third generation cephalosporin. Beta lactam antibiotic.	2 to pass
Subject: Pharm LOA: 1	What is the mechanism of action of ceftriaxone? [What is its site of action?]	Bacteriocidal antibiotic. Only kills growing bacterium. Inhibits transpeptidation reaction of bacterial cell wall synthesis. Halts peptidoglycan synthesis, leading to inhibition of bacterial growth, and ultimately cell death.	2 bold to pass
	Explain the microbiological spectrum of activity of ceftriaxone [Is there anything it is not active against?]	Not usually degraded by bacterial beta-lactamases, therefore broader spectrum of activity. Expanded gram-negative cover and crosses the blood brain barrier. Effective against many 8-lactamase producing Haemophilus and Neisseria and penicillin-resistant pneumococcus. Not active against pseudomonas	3 of 5 bolded
	What is ceftriaxone's plasma half life? [How is this relevant clinically?]	Half life of 7 to 8 hours, meaning it may be administered once daily at 15 to 50mg/kg	Bonus
Stem: A blood gas is	performed		
Question 2 Metabolic acidosis Clinical Building Block	Describe and interpret the venous blood gas	pH 7.10 – acidaemia pCO2 - 23 – reduced – respiratory alkalosis/compensation HCO3 - 12 – reduced – metabolic acidosis Lactate – 4.1 – raised – Lactic acidosis from septic shock pO2 – 53 - decreased – Venous Gas sample so inaccurate	BOLD to pass

		(40% O2 inspired)	
Stem: Moving onto	Physiology. She is hypoxic.		
Question 3 VQ mismatch Subject: Phys LOA: 1	What does Ventilation- Perfusion ratio mean?	The concentration of oxygen (PO ₂) in any Respiratory unit is determined by the ratio of the amount of air getting to the alveolus (ventilation) and blood flow through the Pulmonary capillary (Perfusion). V/Q ratio 0.8 (4.2 litres gas flow/ S.5L blood flow)	Definition
	In the upright lung, how does the V-Q ratio change? [Prompt: Can you graph the distribution of ventilation and Blood flow in the upright lung?] [Can you draw a diagram of the lung showing the V-Q Ratios?]	Ventilation increases slowly from top to bottom of the lung, and perfusion increases more rapidly. V/Q perfusion ratio DECREASES down the lung. It is HIGH at the top of the lung (where blood flow is minimal) and much LOWER at the bottom of the lung.	Bold If used graph must include V/Q relationship

Question 4 Femoral triangle photo – structures and relationships	(McMinn Atlas photo 365A) Name and indicate the boundaries of the femoral triangle	Superior: Inguinal ligament; med – medial border of add longus; lateral: Sartorius; floor iliopsoas & pectineus	4/5
Subject: Anat LOA: 1	Name and demonstrate the contents	Femoral Nerve, artery and vein (nodes & lymphatics)	All 3
	What does the femoral nerve supply?	Muscle: (L2,3,4 post roots) iliopsoas (hip flexion) & quads (knee extension); Superficial division has 2 cutaneous(intermed & medial cutaneous N thigh) and 2 muscular divisions (sartorius & pectineus). Deep division: muscular (quads: rectus femoris, vastus med, vastus lateralis & vastus intermedius) & cutaneous saphenous (skin medial leg and foot) Proprioception hip joint from nerve to rectus femoris; Nerve to vastus medialis provides proprioception to knee	Quads and sensory thigh
Stem: Moving onto	Pathology. Blood cultures grow a Streptoco	occus	
Question 5 Streptococcal infection	1. What is the microscopic appearance of streptococci?	1. Gram positive cocci in pairs or chains	1. Bold
Subject: Path	2. What are some post-infectious syndromes caused by streptococcal infections?	 -Rheumatic fever (+/- complications, chorea) -Immune complex glomerulonephritis -Erythema nodosum, rash, myoclonus, myalgia, arthritis, neuropsychiatric sequelae, tics 	2. 1 bold +1
	3. List some infections caused by streptococcus	 Mouth – dental caries – S.mutans Skin – erysipelas – S.pyogenes (grp A strep) Skin – scarlet fever – S.pyogenes ENT – pharyngitis - S.pyogenes Lungs – pneumonia – S.pneumoniae / pneumococcus CN5 - meningitis – S.agalactiae (grp B strep) Neonatal sepsis CV – endocarditis – S.viridans 	3. Any 4

Stem: A 70yo man prese	nts with vomiting and abdominal pain. He is given n	netoclopramide. We will start with Pharmacology.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Metoclopramide / antiemetics Subject: Pharmacology LOA: 1	a. Describe the mechanisms of action of metoclopramide	Dopaminergic (D2) antagonist at chemoreceptor trigger zone/CTZ. Increases oesophageal motility. Increases LOS pressure. Increase gastric emptying	Bold + 1/3 to pas
	b. Describe the potential adverse effects of metoclopramide	CNS: Restlessness, drowsiness, insomnia, anxiety, agitation – common (20%), esp. elderly Extrapyramidal effects: acute dystonia, akathisia, parkinsonian effects, more likely with higher doses Tardive dyskinesia with chronic dosing Prolactinemia – galactorrhea	bold + 2
Stem: Abdominal X-rays	are taken. Moving onto the Clinical Building Block.		1
Question 2 AXR (bowel obstruction)	Describe this abdominal x-ray	Erect abdominal x-ray showing markedly dilated small intestine. Multiple air-fluid levels.	Bold to pass
Clinical Building Block		Minimal (empty) large bowel loop indicating proximal large bow el obstruction.	
Stem: He has previously	had a normal CT abdomen. Moving onto Anatomy.		
Question 3 Normal CT at transpyloric plane Subject: Anatomy LOA: 2	a. Name the structures on this CT.	Liver, portal vessels, R Kidney (top), aorta, IVC (not clearly differentiated), L kidney, spleen, splenic vein (not tortuous), bowel loops, pancreas, antrum. Vertebra, ribs, paravertebral muscles, intercostal and abdominal wall muscles, fat, skin	4 bold and 2 others
	b. Describe the arterial blood supply of the small and large intestine	The small intestine (jejunum and ilium) is supplied by the branches which arise from the superior mesenteric artery (ileal and jejunal aa). The large intestine is supplied by both the superior mesenteric (ileocolic, middle colic and right colic aa to the ascending and prox 2/3 of transverse colon) and the inferior mesenteric artery .(left colic, sigmoid aa & superior rectal aa). The duodenum is supplied by a branch of the coeliac trunk.	Bold to pass

Stem: Moving onto Pat	hology.		
Question 4 Intestinal obstruction	a. Describe the common causes of bowel obstruction	Adhesions, hernia, malignancy, volvulus, intussusception, mesenteric infarct, strictures (due to Crohns, radiation, mesenteric ischaemia)	4 of 7
Subject: Pathology LOA: 2	b. How does a hernia form, and cause a bowel obstruction?	Weakness/defect in abdominal wall, protrusion of serosa lined pouch of peritoneum (hernia sac). Visceral protrusion (small bowel, large bowel, omentum most often involved.) Entrapment of hernia sac in a narrow neck causes pain.	Bold + 2 others
		Ongoing obstruction \rightarrow venous stasis, oedema \rightarrow incarceration and strangulation Common locations (inguinal, femoral, scars, umbilical)	
	c. Describe some important clinical sequelae of ongoing bowel obstruction	Intestinal perforation, intestinal ischaemia peritonitis, sepsis, abscess, electrolyte disturbance, vomiting and aspiration, death	Bold
Stem: He has not passe	d urine for 12 hours. Moving onto Physiology.		
Question 5 Control of micturition. Subject: Physiology LOA: 2	a. Describe the neurological pathways involved in normal micturition.	 Sacral spinal reflex mediated by S2, S3 and S4 nerve roots. Facilitated and inhibited by higher centres; subject to voluntary control. First urge to void at 150ml. Marked fullness at 400ml - sudden rise in intra-vesical pressure triggers reflex contraction. Micturition reflex: Stretch receptors in bladder wall. Afferent limb in pelvic nerves. Parasympathetic efferent fibres (via same pelvic nerves) mediate contraction of detrusor muscle. Pudendal nerve (S2, S3 and S4) permits voluntary contraction of perineal muscles/external urethral sphincter, to slow or halt flow. Sympathetic nerves to bladder play no role in micturition 	To Pass: Spinal Reflex Parasympathetic control Higher centre control
	b. Describe the muscles involved in micturition. Prompt: What is the bladder muscle called?	 Bladder: smooth muscle arranged in spiral, longitudinal and circular bundles. Circular bundle is called the detrusor muscle. Contraction of detrusor is responsible for involuntary emptying. External urethral sphincter – skeletal muscle sphincter of the membranous urethra. Relaxes during micturition. This is voluntarily controlled. Perineal muscles. Relaxes during micturition. Also voluntarily controlled. In males, urine left in urethra expelled by several contractions of bulbocavernosus muscle. Contraction of abdominal wall muscles aids expulsion of urine. NB: Internal urethral sphincter (smooth muscle bundles passing on either side of urethra) plays no apparent role in micturition 	Bold to pass

ACEM PRIMARY VIVA D Thursday Afternoon Session 2 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Flucloxacillin Subject: Pharm	a. What is the mechanism of action of flucloxacillin?	Beta lactam Inhibits bacterial growth by binding to active site of penicillin binding proteins (PBP), interfering with transpeptidation of bacterial cell wall synthesis \rightarrow cell death (bactericidal)	Bold
LOA; 1	b. What microorganisms are susceptible to flucloxacillin?	Staphylococcal (including beta lactamase producing) Streptococci Not active against MRSA, enterococci, anaerobes, gram negatives	Bold
	c. What are the important side effects of flucloxacillin?	Allergy/anaphylaxis, GIT upset (n/v), Hepatic (cholestasis), Renal (interstitial nephritis), Haematological (neutropenia/thrombocytopenia), Serum sickness	Bold + 1
Stem: A knee x-ray is p	performed. Moving onto Anatomy.		
Question 2 Knee joint (normal x- ray) Use AP and lateral xrays	a. Demonstrate the bony features on this xray	IVFemur: medial and lateral condyles and epicondyles. Adductor tubercle.BoldTibia: medial and lateral condyles that form a relatively flat superior articular surface (tibial plateau). Intercondylar eminence/tibial spine formed by medial and lateral intercondylar tubercles. Tibial tuberosity.BoldFibula: Head of fibula (contacting fibular articular facet of tibia = Tibiofibular joint)Patella	
Subject: Anatomy LOA 1	b. Describe the anatomy of the Cruciate Ligaments	Anterior cruciate: arises from anterior intercondylar area of tibia just posterior to attachment of medial meniscus. Extends superiorly, posteriorly and laterally to attach to posterior part of medial side of lateral femoral condyle (weaker of 2 cruciates and has poor blood supply) Posterior cruciate: arises from posterior intercondylar area of tibia. Passes superiorly and anteriorly on medial side of ACL. Attaches to anterior part of lateral surface of medial femoral condyle (strongest of 2 cruciates)	Bold
	c. What are the factors that contribute to stability of the Knee Joint?	Relatively mechanically weak joint due to incongruence of its articular surfaces Large quadriceps femoris muscle (particularly inferior fibres of vastus medialis and lateralis) most important Tibial (medial) and Fibular (lateral) Collateral Ligaments Anterior and Posterior Cruciate Ligaments	Bold

Stem: You perform a joi	nt aspirate of the knee. Moving on to the Clinical Bu	пипе воск	
Question 3 Joint aspirate	Please describe & interpret this aspirate result.	Very high WCC (>90,000), predominantly neutrophils - suggest infection more likely than other causes	Bold to pass + one extra DDx
of septic arthritis Clinical Building block	Prompt: What is the differential diagnosis?	DDx Septic arthritis Crystal arthropathies Inflammatory arthropathies	
Stem: You are concerne	d about Septic Arthritis. Moving onto Pathology		
Question 4 Septic Arthritis; Staphlyococcal	a. Which organisms may cause septic arthritis?	Staph, Strep, Gonococcus, H influenza, Gram neg (E coli, Salmonella, Pseudomonas)	Bold to pass
infections	b. What are some predisposing conditions for septic arthritis?	 Immunosuppression – DM, steroids, other; Joint trauma/surgery/prosthesis, Chronic arthritis, IVDU 	2 to pass
Subject: Pathology LOA 1	c. Name two different species of Staphylococci and give examples of infections they cause?	 S. Aureus – skin (furuncle, boil, carbuncle, impetigo, abscess, wound), pneumonia, osteomyelitis, Gl/gastro, TSS S. Epidermidis – opportunistic, eg catheterized, IVDU, prosthetic valves S. Saprophyticus – UTI in young females 	S.aureus and 2 examples + 1 other Staph and example to pass
Stem: The patient has a	n acute kidney injury from his sepsis. Moving onto F	Physiology.	
Question 5 Renal tubular function	a. In the renal tubules, what are the mechanisms of reabsorption & secretion?	Co-transporters (sec active transport), exchangers , ion channels, pumps, endocytosis, passive diffusion, facilitated diffusion, active transport	Bold + 1 other to pass
Subject: Physiology LOA 1	 b. What are the main mechanisms for Na reabsorption in the renal tubule? Prompt: In the proximal renal tubule, what other transport proteins are involved in the movement 	 Prox tubule 60% reab, mostly Na/H exchanger Thick AL 30% reab, mostly Na K 2Cl Co-transporter DCT: 7% reab, mostly Na Cl CT Prox: Na/glucose CT, Na/phosphate CT, Na/lactate CT, Na/amino acid CT, Na/H exchanger, Cl/base exchanger 	Bold to pass
	of sodium and chlaride across the apical membrane?		Bold to pass (Note Na/K ATPase is in
			basolateral membrane, & Na channel is in collecting duct

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Scapula (bone) Subject: Anatomy	a. Identify the main features of this bone	 Glenoid cavity, spine, supra & infraspinous fossae, subscapular fossa, acromion & coracoid process Suprascapular notch, supra & infraglenoid tubercles, deltoid tubercle, inf. angle, med. & lat. border 	Bold to pass
LOA: 1	b. Demonstrate on this bone the attachments of the scapulohumeral muscles Prompt if needed: what are the rotatar cuff muscles?*	2. Deltoid – acromion & spine of scapula *Supraspinatus – supraspinous fossa *Infraspinatus – infraspinous fossa *Teres minor – middle part lat. border Teres major – post. surface inf. angle *Subscapularis – subscapular fossa	Bold to pass
Stem: Ketamine is given	for analgesia. Moving onto Pharmacology.		
Question 2 Ketamine pharmacokinetics and Pharmacodynamics	a. Describe the pharmacokinetics of ketamine Prompt: Why does it wear off quickly?	1. Highly lipid soluble, hence rapid onset. Effect terminated by redistribution to inactive tissue sites. Low protein binding (12%). Metabolised in liver (N-demethylation by cyt. P450) -> norketamine (1/3 – 1/5 potency of ketamine) -> hydroxylated & conjugated into H2O sol. Inactive metabolites -> excreted in urine	Bold to pass
Subject: Pharm: LOA: 1	b. What are the CNS effects of ketamine?	Dissociative anaesthetic, profound analgesic, stimulates symp. n.s., incr. cerebral bl. flow (cerebral v/d, raised ICP), nystagmus, partial amnesia, anticonvulsant	Bold + 1 to pass
	c. What are the cardiac and respiratory effects of ketamine?		1 CVS and 2 Resp effects to pass
Stem: Biochemistry is p	erformed. Moving on to the Clinical building blo	ick.	
Question 3 Renal impairment	Describe and interpret this biochemistry result	All results within reference range aside from elevated Creatinine . Indicates renal impairment.	Bold to pass
Subject: CBB	Prompt if needed: "What daes the elevated creatinine indicate?"	Potassium and HCO₃ normal, indicating absence of acute kidney injury.	

Question 4	a. What is the definition of glomerular	1. Overall rate of fluid filtered through the renal corpuscles, into the renal	Concept to pass
Glomerular filtration Subject: Physiology LOA: 1	filtration rate (GFR)? b. What is the GFR in a normal average adult?	tubules. 125ml/minute. (Accept 100 to 150 ml/min) Note it is distinct from renal blood flow (approx. 1250ml/min) or renal plasma flow (approx. 625ml/min). GFR/renal plasma flow is the filtration fraction (which is 10 to 20%).	Bold
	c. What general factors within the glomerulus affect GFR? Prompt: Other than hormones	 A. Overall surface area of capillary bed within the glomerulus. This is determined by glomerular mesangial cells (like smooth muscle cells). Contraction of these cells reduce surface area, and hence GFR. Conversely, relaxation of these cells increases GFR. B. Permeability of glomerular capillaries. C. Hydrostatic pressure within glomerulus. Increased by afferent arteriolar dilatation, efferent arteriolar constriction, increased renal blood flow. Systemic BP may be directly proportional if it's outside the range of auto-regulation. D. Hydrostatic pressure within Bowman's capsule. If increased, eg. ureteric obstruction, will reduce GFR. E. Oncotic pressure within glomerulus. Increased, will reduce GFR. F. Number of functioning renal corpuscles. Loss of corpuscles reduces GFR. This may result from many causes eg. atrophy, parenchymal disease, acute kidney injury, nephrectomy. 	4 out of 6 bold
Stem: He has an anaphy	lactic reaction to the analgesia given. Moving o	nto Pathology	
Question 5 Type 1 Hypersensitivity	a. Outline the immunological mechanisms leading to anaphylaxis.	Exposure to antigen - presentation of antigen to T helper cells by dendritic cells - T helper cells differentiate into T _H 2 cells - these release cytokines that act on B cells to produce IgE	Antigen, IgE, mast cells + 3 other bold to pass Concept of exposure,
Subject: Pathology. LOA: 1	Prompt: Start with the initial exposure to a substance.	 IgE binds to mast cells repeat exposure to the antigen - binds to and cross-links IgE antibodies on surface of mast cells - release of vasoactive amines and lipid mediators (immediate reaction) and cytokines (late phase reaction) from mast cells 	antigen processing by cell lines, mast cell priming and release of mediators to pass.
	Prompt- at tissue level, what are the end argan effects of the anaphylactic response?	 - action of mediators on end organs results in clinical manifestations of anaphylaxis: vasodilation, vascular leakage, smooth muscle spasm). 	
	b. What are the clinical manifestations of systemic anaphylaxis?	Skin, Respiratory (Upper and Lower), GIT, Cardiovascular, Neurological	Two systems described to pass

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Please describe the photo.	Macular widespread (face, scalp, upper limbs and torso) rash	Bold to pass
		Most marked/erythematous on cheeks, confluent in areas	+ 2 descriptors
Rash		?lip involvement also	
		right forearm lesion?papule ?vesicle ?petechial Well nourished	
Clinical Building Block		Difficult to comment on hydration ?dry lips	
		Difficult to comment on nyuration sury ips	
	Prompt if needed: what would be the differential	Likely viral exanthema, allergic reaction, Stevens-Johnson syndrome,	One of two bold
	diagnosis?	meningococcemia, erythema multiforme	
Stem: His temperature	is 38°C. Moving to Physiology.		
Question 2			
Thermoregulation	a. How is heat lost from the body?	Radiation and conduction (70%), vaporisation of sweat (27%), respiration	Bold to pass
Cubicate Obuc		(2%), urination and defaecation (1%).	
Subject: Phys			
LOA: 1		Endotoxins, inflammation and other pyrogens act on monocytes,	3 of 4 bold points
	b. How is fever produced in the body?	macrophages and Kupffer cells to produc e cytokines (eg. interleukins and TNF).	
	Prompt: Outline the pathophysiological	Cytokines act on circumventricular organs (eg. OVLT) which activate the pre-	
	mechanism of fever.	optic area of the hypothalamus. Local release of prostaglandins raises the	
	meenansmojjeven	•	
		temperature set point.	

Question 3			
Upper airway Subject: Anat (Start with model with L half mandible and tongue removed; then split in half. Take model back befare part b)) LOA: 2 Model of airway (model FS5/1)	a. Using the model, demonstrate the main features of the larynx <i>Prompt with knitting needle if needed</i> b. What is the motor nerve supply of the larynx? <i>Prompt: Does the recurrent laryngeal n. supply</i> <i>ALL the intrinsic mm.</i> ?	 20 thyroid cartilage, cricoid cartilage, arytenoid cartilages, epiglottic cartilage/epiglottis, epiglottic vallecula, cuneiform and corniculate cartilages, 23 crico-thyroid membrane, 59 vocal cords Inferior laryngeal nerve is a continuation of the recurrent laryngeal nerve and supplies all intrinsic muscles except one: cricothyroid (which is supplied by the superior laryngeal n.) Larynx innervated by superior and inferior laryngeal branches of the vagus nerves (CN X). 	Bold to pass Bold to pass
Stem: The child is diagno	bsed with croup. Moving onto Pathology.		
Question 4 Croup and Acute inflammation Subject: Path LOA: 1	 a. What is croup? Prompt: What is the effect on the airway Prompt: What viral agents cause croup? b. Describe the main characteristics of acute inflammation. Prompt: Describe the general characteristics of acute inflammation. 	 Acute laryngotracheobronchitis in children: inflammatory/spasmodic narrowing of the airway produces barking cough, inspiratory stridor. Causes are predominantly viral, esp Parainfluenza virus. RSV, adenovirus and influenza are others. Main characteristics of Acute Inflammation: A. Relatively rapid onset. Alterations in vascular calibre that increase blood flow. Leaky microvasculature: Structural changes in microvasculature that permit plasma proteins and leucocytes to leave circulation. This leads to oedema. Emigration of leucocytes (esp neutrophils), their accumulation at site of infection, and activation to eliminate offending agent. Duration of hours to days. 	Bold Bold

Question 5			
Dexamethasone (Dose/PD)	a. What is the usual dose of dexamethasone for treatment of croup?	0.15-0.60mg/kg PO, single dose	dose range to pass
Subject: Pharm	deatment of cloup:		
LOA: 1	b. How can dexamethasone be administered? Prompt: Any other routes?	Oral, IV, IM, topical	3/4 to pass
	c. How does the anti-inflammatory effect of dexamethasone compare to hydrocortisone? <i>Prompt: How does the duration of action differ?</i>	Dexamethasone is 30 times more potent and longer acting	Bold to pass
	d. Describe the anti-inflammatory and immunosuppressive effects of glucocorticolds.	Effects on concentration, distribution and function of peripheral leucocytes Suppression of inflammatory mediators (cytokines, chemokines) Inhibit function of macrophages and antigen presenting cells Inhibit PLA2 -> decrease PG/LT/PAF	2/4 to pass

Stem: A 50 year old i	Stem: A 50 year old man presents in septic shock. The cause of this is unclear on initial assessment. We will start with Pathology.				
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES		
Question 1 Septic Shock (pp 129-133)	What is Shock?	State where reduced cardiac output or effective blood volume results in impaired tissue perfusion and cellular hypoxia	Bold concepts		
Subject: Path LOA: 1	How do microbes initiate septic shock? <i>Prompt: What are the mechanisms</i>	 Interaction with innate cells of immune system – examples neutrophils, macrophages, monocytes Interaction with Humoral cells of immune system to activate complement & coag pathways Direct action on endothelium (complex, not fully understood) Toll-like receptors recognise microbial elements, and other mechs End result is mediator release examples TNF,IL-6, 8, 10, PAF PAI-1, HMGB1 	2 of 3 plus examples of each (at least 1) + understand role of mediators		
	When DIC develops, what is the process?	 Induction of procoagulant state by: 1 Increased TF production 2 Decreased production of Protein C 3 TF pathway inhibitor Thrombomodulin 4 Decreased fibrinolysis by increasing plasminogen activator inhibitor, Combined with stasis (decr washout of activated coag factors) results in activation of thrombin & and fibrin rich thrombi 	2 of 4 & understanding of process		
	What factors determine the severity and outcome of septic shock in an individual?	Extent and virulence of infection Immune status of host Presence of other co-morbid conditions Pattern and level of mediator production	Bonus Q – no pass criteria		

Stem: We will now mo	ove to Pharmacology. He is given ceftriaxone.		
Question 2	What type of antibiotic is ceftriaxone?	Third generation cephalosporin. Beta lactam	1/2 bold
Ceftriaxone (pp 799- 800) Subject: Pharm LOA: 1	Describe the pharmacodynamics of ceftriaxone	Inhibits transpeptidation reaction of bacterial cell wall synthesis. Halts peptidoglycan synthesis, leading to inhibition of growth, and ultimately cell death (Bacteriocidal)	Bold
	Explain the microbiological spectrum of activity of ceftriaxone	Stable to bacterial beta-lactamases, therefore broader spectrum of activity. Expanded gram- negative cover and crosses the blood brain barrier. Effective against B-lactamase producing Haemophilus and Neisseria	Bold
	What is the clinical relevance of	Half life of 7 to 8 hours, meaning it may be	Bold
	ceftriaxone's half-life?	administered once daily at 15 to 50mg/kg	
Stem: We will now mo	ove to Physiology. Initial urea and electrolytes s		
Question 3	What are the major physiological features of acute intrinsic renal failure?	Loss of urine concentrating and dilutin g capacity due to loss of countercurrent mechanism and nephron	3/5 bold ones
Effects of disordered	(prompt: what happens to urine	number. Polyuria →oliguria → anuria	
renal function (pp	concentration?)	Uraemia due to urea and creatinine and toxins	
692-693)		(phenol and acids) build up.	
Subject: Phys		Acidosis. Anaemia	
		Na+ retention and oedema and heart failure	
LOA: 1			
	What are common findings in urinalysis of acute intrinsic renal failure?	Proteinuria, leucocytes, red cells and casts	3 bold
		Proteinaceous material precipitated in tubules	Bold
	What are urinary casts?	washed into bladder.	
Stem: We will now mo	ove to Anatomy. An abdominal CT scan is done		1
Question 4	Identify the structures visible.	Liver, portal vessels, part of gallbladder (not obvious),	4 Bold + 2 others
CT abdomen		R Kidney (top), diaphragms, aorta , IVC (not clearly differentiated),	
		L kidney, spleen, splenic vein (not tortuous), bowel	
Subject: Anat		loops, pancreas, antrum.	
LOA: 2		Vertebra, ribs, paravertebral muscles, intercostal and	
		abdominal wall muscles, fat, skin.	

Candidate Number:

AGREED MARK:

-

Stem: A 10 yo boy pre	esents with a headache and fever. We will start	: with Anatomy.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 L-spine (bone) Subject: Anat LOA: 1	 What type of vertebral body is this, outline its features? Prompt: how is it different to other vertebra 	Lumbar. Large kidney shaped body. Transverse processes are long and slender. Vertebral foramen triangular, larger than thoracic/smaller than cervical. Spinous process is short, thick, hatchet shaped. Articular processes/facets extend vertically	Bold to pass 2 of 4 to pass
	2. What levels should a Lumbar Puncture be performed at, and what landmarks are used?	L 3-4, 4-5 or L 5-S1. Spinal cord ends at L2. Top of Iliac crests at L4 spinous process. Hence space above or below this avoids the cord.	2 levels + landmark to pass
	3. What structures does the needle pass through in order?	Skin/sub cut fat/supraspinous lig./interspinous lig./lig. flavum/epidural space/dura/subarachnoid space	5 of 8 to pass
Stem: Moving onto Pl	narmacology. You use lignocaine as the local an	aesthetic	
Question 2 Local Anaesthetics Subject: Pharm	Describe the mechanism of action of lignocaine?	Na channel blocker, Class 1B. Blocks (activated & inactivated) Na channels = Blocks nerve conduction . Less effect in infected tissue	Bold
LOA: 1	What factor affect systemic absorption after local infiltration	Dose/ Site of injection/ Drug tissue binding/ Tissue blood flow/ Vaso constrictors (combine preparation)	3 of 5
	What are the toxic effects of Lignocaine	CNS - Early: tongue/oral numbness/metallic taste , parathesia, sedation. Moderate: nystagmus, muscle twitching, N&V, Tinnitus, visual disturbance Severe: Seizures , sedation CVS- Cardiovascular collapse Hypotension, bradycardia, rarely arrhythmia, worsen CCF or conduction blocks GIT Anorexia, N&V (thru CNS effects)	Bold

Clinical Building	What is the likely diagnosis and why?	Turbid, low sugar, high protein, pleocytosis with	Diagnosis + 2 reasons
Block:	, , , ,	neutrophil predominance, no bacteria	
		Acute bacterial meningitis	
Stem: Moving onto	Pathology.		1
Question 3	What are the other types of meningitis?	Viral, chronic (tuberculosis), fungal, chemical / drug	3 out of 5 including bold
Meningitis		induced, carcinomatous	
Subject: Path			
	What organisms commonly cause bacterial	Neonates: Escherichia Coli and Group B Streptococcus	1 per age group, must mention
LOA: 1	meningitis in the different age groups?	Children: Streptococcus Pneumoniae, Haemophilus	Bold.
		Influenza (now less common)	
		Adolescent / young adult: Neisseria Meningiditis,	
		Streptococcus Pneumoniae	
		Older adults: Strep Pneum, Listeria	
	Physiology. The child appears very unwell.		
Question 4	What are the physiological effects of	Permissive action – catecholamine effects – pressor /	Bold + 2 metabolic + 1 other
Effects of	glucocorticoids?	vascular reactivity; bronchodilation	
Glucocorticoids		Metabolic - Increase protein catabolism; increase	
Subject: Physiol		hepatic glycogenolysis and gluconeogenesis ->	
LOA: 1		increase in plasma glucose; anti-insulin effects on	
LUA. I		peripheral tissues; increase lipolysis. Free water excretion (decreased vasopressin)	
		Immunological – decreased inflammation/ allergic	
		response/ lymphocyte activity	
		Haematological – increase neutrophils/ platelets/ red	
		blood cells	
		CNS – EEG slowing, personality changes	
	How is glucocorticoid secretion regulated?	Glucocorticoids (cortisol) - secreted from the adrenal	Bold
		cortex; secretion dependant on ACTH secretion from	
		the anterior pituitary	
		ACTH secretion is regulated by CRH released from the	
		hypothalamus (in response to low cortisol levels or	
		stress)	
		Glucocorticoids provide a negative feedback loop on	
		the hypothalamus and the anterior pituitary to	
		reduce ACTH secretion	

ACEM PRIMARY VIVA A

 ${}$

Friday Morning Session 3 Candidate Number:

1	man presents to ED with palpitations.	KNOW/ FDCF (accortial in hald)	NOTES
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Stem: An ECG is don			1
Clinical Building	Please describe and interpret his ECG.	Rate: Ventricular 75-100, atrial approx. 300/min	Bold to pass
Block: ECG Atrial	Prompt: what is the rhythm and rate	Rhythm: Irregular. Variable block (3&4:1)	
Flutter		P waves: Atrial flutter waves (sawtooth) Axis: Normal.	
		QRS: Narrow complex, anterior Q waves. T-waves:	
		difficult to comment. = A flutter, variable block	
Stem: Moving onto	Pathology. He has an underlying cardiomyopath	<u>Y</u>	
Question 1	Name the types of cardiomyopathy.	Dilated cardiomyopathy (DCM), Hypertrophic	Bold
Cardiomyopathy	(Prompt: based on function/pathology)	cardiomyopathy (HCM), Restrictive cardiomyopathy	
Subject: Path			
LOA: 2	What are the causes of acquired	Infections (viral, bacterial, fungal, protozoal);	3/5 bold + and examples
	cardiomyopathy?	Metabolic (hyperthyroidism, nutritional) Infiltrative	
		(sarcoid, carcinoma) Immunological (autoimmune	
		myocarditis) Drugs/toxins (alcohol, chemotherapy)	
		Ischaemic, hypertensive, valvular.	
	How do dilated and hypertrophic	DCM: cardiac dilatation, poor LV EF (<40%). Impaired	Bold for each
	cardiomyopathy differ?	contractility (systolic dysfunction)	
	Prompt: left ventricular structure and	HCM: myocardial hypertrophy, normal or high LV EF .	
	function	Impaired compliance (diastolic dysfunction)	
Stem: Moving onto	Physiology. His blood pressure is 100/60		
Question 2	Please draw and label the pressure volume	Graph with appropriate axis, curves and approximate	Correct graph & bold to pass with
Cardiac cycle;	curve of the left ventricle	pressures	reasonable understanding of the
pressure / volume			Іоор
Subject: Phys	Describe the pressure and volume changes	(a to b)Start of systole, mitral valve closes.	
LOA: 1	in the left ventricle at the onset of systole	Isovolumetric contraction until LVP>Aortic P	
	<i>Prompt : What is meant by isovolumetric contraction.</i>	(80mmHg) then Aortic valve opens. ESV 50ml	

	Describe the pressure and volume changes in the left ventricle at the onset of diastole <i>Prompt : What is meant by isovolumetric</i> <i>relaxation</i>	(c to d) Momentum of ejected blood is overcome by arterial pressure, then the Aortic valve closes. Isovolumetric relaxation as the ventricular pressure drops rapidly until below atrial pressure. Then AV valve opens to start ventricular filling. EDV 130ml, Stroke volume 70-90ml	Figure 30–2 A series in the random stars for a series for the series of
Stem: Moving onto	Pharmacology. It is decided to treat him with Am	iodarone	
Question 3 Amiodarone	What anti-arrhythmic class does amiodarone belong to?	Class 3: also class I,II,IV effects	Bold to pass
Subject: Pharm LOA: 1	What are the effects of amiodarone on the heart?	Increases Action potential duration (APD) due to blockade of rapid component of delayed K ⁺ current(I _{kr}). Chronic use also blocks slow K ⁺ rectifier. Prolongs QT (due to above effect) Blocks inactivated Na ⁺ channels. Weak adrenergic and Ca ⁺⁺ channel blocker	Bold to pass
	What other arrhythmias is amiodarone used for?	Atrial Fibrillation/ Ventricular tachycardia/Ventricular fibrillation/ Supraventricular (re-entrant/ accessory)	2 to pass
	What arrhythmias may amiodarone cause?	Torsades de pointes (rare < 1%), Bradycardia, Heart block	1 to pass
Stem: Moving onto	Anatomy.		
Question 4 Heart Model Subject: Anat LOA: 1	Using this model please describe the arterial supply of the heart	Coronary arteries arise from coronary sinuses. L Coronary artery divides into LAD and Circumflex . LAD - diagonal branches. Circumflex – marginal branches. RCA inferior in AV groove – SA nodal, AV nodal, marginal, posterior IV (2/3).	Bold + 1 other
	What does the Right Coronary artery supply?	RA, most of RV, diaphragmatic (inferior) part of LV, post 1/3 IV septum, SA node in 60%, AV node in 80%	3/6 to pass
	Describe the cardiac conduction system.	SA Node – Junction of SVC and RA. AV Node – Postero-inferior AV septum near coronary sinus. AV bundle of His. Left and Right Bundles	Bold + 1 other

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Clinical	Please describe this x-ray.	Xray C1-C7. C7/T1 not visualised	Bold. PROMPT: What
Building Block:		Step at C5/C6 consistent with bi-facet dislocation	are the radiological
		Disruption of all 4 lines: Soft tissue, Anterior, Posterior, Spinolaminar lines	lines to examine? 3
Stem: Staying w	ith Anatomy		
Question 1	Please describe these cervical	C1 "Atlas":	Must display correct
Cervical	vertebrae	Anterior and posterior arch	anatomical position
Vertebrae	PROMPT: Demonstrate their	Lateral mass with Transverse processes	and articulation
	anatomical orientation and	Articular facet for Dens	
Subject: Anat	function.	Superior articular facet- articulates with occipital condyles	And name the bold
		Inferior articular facet- articulates with axis	
LOA: 1	Show C1 and C2	Anterior and Posterior tubercles	
		Foramina: vertebral and transverse	
		C2 "Axis"	
		Dens with anterior and posterior articular facet	
		Body	
		Pedicle	
		Lateral mass	
		Transverse and spinous process	
		Superior and Inferior articular facet	
	What are the characteristics of	Small, oval body with large vertebral canal, concave on superior surface and convex on	
	a typical cervical vertebra?	inferior surface.	3 to pass
		Superior surfaces of bodies have raised processes (uncinate), each of which articulates with a	
		depressed area on inferior lateral aspect of the superior vertebral body	
		Spinous processes are short, bifid, and downward sloping (C7 usually non bifid)	
		Facet joints are more horizontal allowing a greater range of movement	
		Anterior and posterior transverse process with a foramen transversarium allowing passage of	
		vertebral artery, vein and sympathetic plexus	

Stem: We will r	now move to Pathology. An MRI sh	nows acute swelling of his cord in the region of his injury	
Question 2 Mediators of	What stimuli cause production of inflammatory mediators?	Substances released from necrotic cells, microbial products, cell injury, mechanical irritation.	2 to pass.
inflammation (pp 56-66)	What are the chemical mediators of acute	Histamine : vasodilation, inc vasc perm, endoth activation PG : vasodilation, inc vasc perm	4 to pass (including names and actions)
Subject: Path	inflammation and what are their actions?	Leukotrienes: inc vasc perm, chemotaxis, WC adhesion & activation PAF: vasodil, inc vasc perm, chemotaxis, WC adhesion, degran	,
LOA: 1		Complement: WC chemo and activation, vasodilat Cytokines (TNF, IL-1): endo activation (adhesion), fever, pain, hypotension, dec vasc resist Chemokines: chemotaxis, WC activation Kinins: inc vasc perm, vasodil, pain, sm m contraction	
	ow move to Pharmacology. He de	velops neurogenic shock and is treated with metaraminol.	
Question 3 Metaraminol (chp 9)	What is the mechanism of action of Metaraminol?	Direct alpha 1 receptor agonist – some indirect effect through increased noradrenaline.	Bold
Subject: Pharm			
LOA: 1	What are its effects on the cardiovascular system?	 Vaso and arterio – constriction in vascular beds. Arterioconstriction → ↑BP Direct cardiac effects less important HR slows due to vagal feedback CO unchanged or slight decrease as ↑VR and hence SV 	Bold
	What role do sympathomimetics have in management of shock?	Temporising only While other treatment instituted – fluids, etc Efficacy not proven Useful in 'failure' sympathetic NS (eg/ spinal injury or anaesthesia)	Understanding of temporary only

Stem: We will no	ow move to Physiology.		
Question 4	What are upper motor	Upper motor neurons usually refer to corticospinal neurons that innervate spinal motor	Bold
Spinal Tracts	neurons?	neurons (also include brain stem neurons that control spinal motor neurons).	
(pp 228-229)			
	What clinical features are seen	Damage initially causes muscles to become weak and flaccid but eventually leads to	2 of bold
Subject: Phys	when they are injured?	spasticity, hypertonia, hyperactive stretch reflexes and an abnormal plantar extensor reflex (upwards))	findings
LOA: 2			
	What is the physiological basis to clonus?	Loss of descending cortical input to inhibitory neurons called Renshaw cells, and therefore loss of inhibition of antagonists, resulting in repetitive sequential contractions of ankle flexors and extensors.	Bold
	List the long term	Ulcers	2
	complications of spinal cord	Protein /muscle degradation	-
	injury	Hypercalcaemia	
	5-7	Renal stones (calcium)	
		Urinary tract infection	

ACEM PRIMARY VIVA B Thursday Afternoon Session 2 Candidate Number:

AGREED MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 CO ₂ transport Subject: Phys LOA: 1	Q1. How is CO2 carried in the blood?	 CO2 is carried in the blood in 3 forms: 1. dissolved - approx 5-10% 2. as bicarbonate - approx 90% 3. combined with proteins as carbamino compounds, approx 5-10% 	Bold + 1 other
	Q2. How is bicarbonate formed in the blood? Prompt: can you write an equation	CA CO2 + H2O $\leftarrow \rightarrow$ H2CO3 $\leftarrow \rightarrow$ H+ + HCO3- The 1 st reaction is very slow in plasma but fast within the red blood cell because of the presence there of an enzyme Carbonic Anhydrase (CA). The 2 nd reaction, ionic dissociation is fast without an enzyme.	Talk through equation and Bold.
	Q3. What is the chloride shift?	HCO3- diffuses easily out of the cell. H+ doesn't because the cell membrane is relatively impermeable to cations . Therefore to maintain cell neutrality Cl- diffuses from the plasma into the cell.	At least 1 bold
	Q4. What is the Haldane effect?	 H+ + HbO2 <-> H+-Hb + O2 The Haldane effect: DeoxyHb binds more H+ than oxyHb and forms carbamino compounds more readily. Binding of O2 to Hb reduces its affinity for CO2 1. Enhances the removal of CO2 from O2 consuming tissues (eg muscles) into the blood. CO2 can bind to amino groups on Hb to form carbaminoHb. CarbaminoHb is the major contributor to the Haldane effect. 2. Promotes the dissociation of CO2 from Hb in the presence of O2 (eg the lungs) which is vital for alveolar gas exchange 	Additional question if time permits

Stem: An 80 year old man is sent to ED from his nursing home after a fall. He has multiple injuries and has been given IV morphine by the ambulance officers. On arrival in ED he is hypoventilating. We will start with Physiology.

Question 2	2.1 Indicate on the X-	Xray description	Bold to pass
Shoulder X-	ray the anatomy of the	HUMERUS:	
ray	shoulder joint	Head – articulates with glenoid	
Subject: Anat		Anatomical neck	
LOA: 1		Surgical neck	
		Greater Tubercle	
		Lesser tubercle	
		SCAPULA	
		Glenoid cavity	
		Neck	
		Acromion process	
		Coracoid process	
		Spine	
		Superior, medial and inferior angle	
		Clavicle	
		Distal portion articulates with acromion	
	2.2 Name the	1. Glenohumeral ligaments (superior, middle and inferior) consists of three bands, which runs	2/4 to pass.
	ligaments and describe	with joint capsule from glenoid fossa to anatomical neck of humerus. They act to stablise the	2 / 1 to puss.
	how they stabilise the	anterior aspect of the joint.	
	shoulder joint		
	5	2. Coroacohumeral ligament – Attaches the base of the coracoid process to the greater tubercle	
		of the humerus. It supports the superior part of the joint capsule.	
		3.Transverse humeral ligament – Spans distance between two tubercles of humerus. Holds the	
		tendon of long head of biceps in the intertubecular groove.	
		4. Coracoacromial ligament -runs between the acromion and coracoid process of the scapula,	
		forming the coraco-acromial arch. This overlies the shoulder joint, preventing superior	
		displacement of the humeral head.	

Stem: Movin	ng on to Pharmacology. There is a f	racture dislocation of his left shoulder. His shoulder is reduced under Propofol sedation	
Question 3 Propofol Subject: Pharm LOA: 1	Q1. Please outline the pharmakokinetics of propofol	IV administration only, Distribution half life 2 - 4 minutes , Elimination half life 4 -23 minutes , Duration of action 3 - 8 minutes - Rapid onset and recovery due to redistribution of drug from brain to skeletal muscle and then fat (rather than metabolism), Rapidly metabolised in the liver but as total body plasma clearance > hepatic flow, likely some extrahepatic mechanism (mostly lung), Excretion in the urine as glucuronides and sulphates < 1% unchanged	Bold, reasonable understanding of redistribution of drug
	Q2. What dose of propofol is used for induction of general anaesthesia? How does this differ from a procedural sedation dose?	PROCEDURAL SEDATION DOSE: 0.5 - 1.0 mg/kg single bolus dose or titrate in 10 - 20 mg aliquots particularly in conjunction with morphine, INDUCTION DOSE: 1 - 2.5mg/kg (adults) and 2.5-3.5mg/kg in kids	Bold
	Q3. What clinical effects should be anticipated when using propofol?	anaesthesia/sedation, respiratory depression, transient apnoea , hypotension through vaso and venodilation, no analgesic properties, potential allergic reaction (soy, eggs), pain at injection site, metabolic acidosis when given as an infusion, antiemetic properties	Bold + 2 more
	Q4. How can you limit adverse effects when administering propofol?	smaller total doses, titrated doses, no opiates or benzodiazepines given simultaneously, IV fluid bolus, caution in the elderly and in those with poor cardiovascular reserve	2

Question 4	Describe the steps in fracture	1 haematoma fills fracture gap – provides fibrin mesh framework (hrs)	4 of 5 steps
Fracture	repair process	2 influx inflam cells, fibroblasts, new vessels (days)	Logical sequence
Healing		3 haematoma organising -> procallus	
Subject: Path		4 osteoprogenitors deposit trabeculae of woven bone – ossification -> bony callus (2-3 weeks)	
LOA: 1		5 callus matures, remodelling (6 weeks)	
	How does remodelling of callus occur?	Initial large volume of callus – portions not physically stressed are resorbed, reducing callus size/altering contour	Physical stress, resorption
	What factors can impede the healing of a fracture?	Inadequate immobilisation , marked displacement, infection (open fractures/FBs), systemic factors (nutrition, smoking)	2 bold and 1 other
	(Supplementary – if time remaining) How are fractures classified?	Complete/incomplete, open/closed, comminuted, displaced, pathologic, stress	

ACEM PRIMARY VIVA B Friday Morning Session 3 Candidate Number:

AGREED MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Thirst	Q1. Where is thirst regulated?	Hypothalamus - diencephalon	Bold
Subject: Phys LOA: 1	Q2. What factors increase thirst? Q3. In what situations may thirst sensation be blunted?	 Increase in osmotic pressure in plasma sensed by osmoreceptors in the anterior hypothalamus Decrease in ECF volume (e.g. haemorrhage) a) Sensed by baroreceptors in heart and blood vessels – increases thirst b) Increase in renin – causes increase AT II – acts on the diencephalon neurons – increases thirst Psychological – e.g. acute psychosis Others a) Increase liquids during eating (prandial drinking) b) Other poorly understood mechanisms such as increased osmolality as food absorbed and GI hormones acting on the hypothalamus hypothalamic disease direct damage to the diencephalon altered mental state psychosis lesion of the anterior communicating artery (supplies the hypothalamus) diet high in protein (products of protein metabolism cause water diuresis) 	Bold with understanding Bold + 1 other

Stem: A 70 year old lady with a history of bipolar disorder is found on the floor many hours after a fall. On arrival in ED, she is tachycardiac and complaining

Stem: Moving on	item: Moving onto Pharmacology. Her medications include Lithium					
Question 2 Lithium Subject: Pharm	Q1. What are the adverse and/or toxic effects of lithium?	Neuro - tremor, choreoathetosis, ataxia , dysarthria, hyperactivity, confusion , withdrawal. Thyroid - reversible hypothyroidism . Renal - polyuria , polydipsia (nephrogenic diabetes insipidus), chronic interstitial nephritis, nephrotic syndrome. Cardiovascular - oedema,	At least 3 bold			
LOA: 1	Q2. Describe the pharmacokinetics of lithium	worsening of sick sinus syndrome Oral absorption (peak 0.5-2 h but complete 6-8 h). Distributes in TBW. Excreted unchanged in urine. Plasma half-life 20 h. Therapeutic concentration 0.6-1.4 mmol/L	Bold, plus some appreciation of longer half- life.			
	Q3. How can you assess lithium toxicity and how do you treat it?	Measure levels (should be 10-12 h after last dose) >2 mmol/L should be considered toxic. Treatment is supportive and haemodialysis (Prompt that Li is an ion).	Bold, plus some concept that levels should be measured well after last dose.			

Question 3	Please demonstrate the main bony	Femoral head / fovea for lig of head / Greater trochanter / lesser trochanter /	Pass = bold + 3 others
Femur (bone) Subject: Anat LOA: 1	features of the proximal femur	Neck / intertrochanteric line (anterior)/ Intertrochanteric crest (posterior) / quadrate tubercle /pectineal line / Gluteal tuberosity / linear aspera with medial and lateral lips	
	Demonstrate on the model the muscular attachments to the greater trochanter	 MM originating ; 1. Vastus lateralis MM Inserting ; 1. Gluteus max (some fibres only, most to ileotib tract) 2. Glut med; To lat surface 3. Glut min; to ant surface 4. Piriformis; to sup border 5. Obturator internus; to med surface (trochanteric fossa) 6. Sup and inf gemelli; to med surface 	Pass = 4/7
	The patient has a subcapital (intracapsular) fractured neck of femur. What is the most concerning complication of this type of fracture and why does this occur?	 Avascular necrosis of femoral head Hip joint has dual supply ; 1. Med & lat circumflex femoral aa, usually branches of deep aa of thigh (sometimes can arise direct from fem aa) 2. aa to head of femur, branch of obturator aa, traverses lig of head (often small/inadequate) 	Pass = bold
	<i>Prompt ; What is the blood supply to the hip joint and how would this be disrupted</i>	Main supply is via retinacular aa, from branches of circumflex femoral (esp medial circumflex femoral, because these are able to pass freely under unattached post border of joint capsule. Branches from lat Cx must penetrate thick iliofemoral lig and are smaller and fewer). Retinacular aa are torn or disrupted in intracapsular #	

	oving onto Pathology. Her biochemistry results show an acute kidney injury					
Question 4	Define Acute Kidney Injury	Clinico-path entity, acute reduction of renal function with morphologic tubular	Bold			
Acute tubular		injury (usually)				
necrosis						
Subject: Path	What are the causes of AKI (please	1 Ischaemia/abnormal blood flow. Systemic – thrombosis (HUS, TTP, DIC) or	Bold and 1 other			
	give examples)?	hypovolaemia. Intra-renal – angiopathies, malignant HT	category			
LOA: 2		2 Toxic injury to tubules- drugs, radio-dye, myoglobin	1 example for each			
		3 Acute tub.int nephritis – reaction to drugs				
		4 Obstruction ("post-renal") –tumour, clot				
	Describe the typical clinical course of	Variable				
	AKI	1 Initiation 36 hours – decr UO, incr urea				
		2 Maintenance – oliguria , salt/H2O overload, incr urea/K/H	Oliguric phase, polyuric			
		3 Recovery - incr urine vol (up to 3L/d), H2O/Na/K loss. Ur/Cr r/t normal	recovery			
			,			
	(Supplementary – if time remaining)	Ischaemic injury from hypovol/hypotension from femur # +/- inability to get to				
	What are the most likely causes in this	water				
	70 year old lady?	Myoglobin deposition from rhabdo				
		myoglobin deposition nom mabuo				

ACEM PRIMARY VIVA C Thursday Morning Session 1 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Clinical Building Block ECG with AMI	Please describe and interpret the significant abnormalities in this ECG.	 Sinus, rate ~100/min, normal axis ST elevation (STEMI) Inferior leads ST depression and inverted T waves in I, aVL, V2, V3 (Reciprocal changes) 	Bold
Stem: We will now mo	ove to Physiology.		
Question 1 ECG – myocardial infarction Subject: Phys LOA: 1	Explain the electrophysiological changes that cause the ST segment elevation seen in a myocardial infarction? Prompt for time course Second prompt for cellular mechanism	 Abnormally rapid repolarisation of the infarcted muscle (accelerated opening of K+ channels). Current flow out of infarct (normal region negative relative to infarct). Occurs within seconds of infarction and last a few minutes. Decreased resting membrane potential (due to loss of intracellular K+). Begins in first few minutes secondary to process above. Current flow into infarct during diastole (ECG configured to record as ST elevation). Slowed depolarisation of affected cells cf normal cells. Occurs @ 30 minutes into infarct process. Current flow out of infarct. 	2 of 3 to pass
Stem: We will now mo	ove to Anatomy. She needs vascular access.		
Question 2 Upper limb model Subject: Anat LOA: 1	Demonstrate the boundaries of the cubital fossa	Lateral: med border of brachioradialis (20) Medial: Lat border of pronator teres (12) Floor: Brachialis (10) Superior: Line between 2 epicondyles of humerus Roof: Skin, deep fascia reinforced by bicipital apon FYI: 13 = FCR	Bold to pass
	What are the contents of the cubital fossa ?	Med to lat: median n (71), brachial a (49), biceps tendon (9), radial n deep to brachioradialis (20)	Bold to pass
	Identify the brachial a and its branches in the forearm	Brachial (49), Radial (55), Ulnar (59), Common Interosseous (60), post interosseous (61) Median (62)	Bold to pass

Question 3	What sequence of changes occur in the vessel	Intimal tear into media of aorta, strips along laminar	Bold (conceptually)
Aortic Dissection	wall in aortic dissection?	planes, formation of blood filled channel which may then	
Subject: Path		rupture outwards.	
LOA: 1			
	What are the risk factors?	Men aged 40-60 with hypertension	Hypertension + one other
		Connective tissue disorders eg Marfans	
		Complication of arterial cannulation	
		Trauma	
	What are the types of aortic dissection?	Stanford Type A – proximal ascending + (DeBakey I)/-	Concept (prox & distal)
	Prompt = classification?	(DeBakey II) distal, may rupture back through Ao Valve . B	
		is	
		Stanford Type B – beyond subclavian artery (DeBakey III)	
Stem: We will now m	nove to Pharmacology. She is now hypertensive. You	commence a glyceryl trinitrate (GTN) infusion	
Question 4	What is the mechanism of action of GTN	Nitrite -> NO -> ^ cGMP -> Smooth m relaxation.	Bold
Glyceryl Trinitrate		Prostaglandins may be involved	
Subject: Pharm			
LOA: 1	What are its clinical effects?	1. Beneficial effects-venodilation, reduced venous	2 of 3 Bold
		return, decr ventricular pre-load, reduced LVEDV,	
		reduced LV wall tension, reduced myocardial oxygen	
		consumption. Vasodilation of epicardial coronary	
		arteries, increased coronary collateral flow.	
		Decrease systemic BP	2 adverse effects
		2. Adverse effects - hypotension, tachycardia, headache	
	What are the indications for GTN use in the		Bold plus two others
	ED?	Angina, acute coronary syndrome, hypertensive	
		urgencies/emergencies, APO, aortic dissection (with beta-	
		blockade)	

ACEM PRIMARY VIVA C Thursday Afternoon Session 2 Candidate Number:

Stem: A 60 yo man has	s a very high blood glucose. We will start with Patholo	ogy.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Pathogenesis of Diabetes Mellitus Subject: Path LOA: 2	What is the pathogenesis of Type 2 Diabetes Mellitus?	Insulin resistance - decreased ability of the peripheral tissues to respond to the secreted insulin - secondary to either genetic predisposition or obesity/lifestyle factors Quantitative and qualitative beta cell dysfunction - manifests as inadequate insulin secretion in the face of insulin resistance and hyperglycaemia - initial beta cell hyperplasia maintains normoglycaemia with increased levels of insulin secretion - early and subsequently late failure manifests as impaired glucose tolerance and diabetes - genetic predisposition to B-cell failure.	Bold to pass
	What are the complications of diabetes?	 Macrovascular - coronary, peripheral vascular, cerebral and other large vessel atherosclerosis, hypertension Microangiopathy- nephropathy, peripheral neuropathy, autonomic neuropathy, cerebral microangiopathy Diabetic ocular complications- retinopathy, cataracts, glaucoma Increased susceptibility to infections HONK, DKA, hypoglycaemia, hyperglycaemia 	Two from 1 & 2 and one from the third group.

Stem: Moving onto Phy	siology. Urine analysis reveals glucose.			
Question 2 (Renal handling of glucose Subject: Phys LOA: 1	Describe the way the kidney handles glucose.	 Resorbed transport Na depen GLUT 2 fa 	ered the glomerulus in the early part of the PCT by secondary active ident co transportation (SGLT2 into cells then cilitated diffusion into interstitial fluid) in the urine if renal threshold is exceeded.	1 & 2 plus understanding of 3 & 4
	What are the potential consequences of glycosuria	Osmotic diure	sis – dehydration, electrolyte loss (Na, K)	Understanding

Stem: Moving onto A	natomy.	. On examination, he has a swollen knee		
Question 3	1.	Please identify the ligaments of the knee joint	Patellar ligament – apex of patella to tibial tuberosity	Identify attachments of 3/5
Knee model		and their attachments	Fibular collateral ligament- lateral epicondyle of femur to –	
Subject: Anat			lateral surface of fibula head	
			Tibial collateral ligament – medial epicondyle of femur –	
LOA: 1			lateral and superior aspect of tibia	
			Anterior cruciate – anterior intercondylar area of tibia to	
			anterior aspect of the lateral surface of medial condyle of	
			femur	
			Posterior cruciate – posterior intercondylar area of the tibia to	
			anterior aspect of the lateral surface of medial condyle of	
			femur	
			Posterior meniscofemoral ligament	
	2.	Describe the main movements of the knee	Extension – quadriceps femoris	Bold
		joint and the muscles involved.	Flexion – semitendinosis, semimembranosus, biceps femoris	
			Medial rotation – when flexed – ST, SM	
			When non wt bearing knee extended – popliteus	
			When knee extended and weight bearing – knee passively	
	3.	5 51	locks due to medial rotation of femoral condyles on tibial	
		the joint is extended and flexed	plateau	Understand concept
			Knee unlocks through contraction of popliteus rotating femur	
			laterally on the tibial plateau allowing flexion	
Stem: Moving onto Pl	harmaco	ology. He has been on Gliclazide for his Diabetes		
Question 4	1.	What class of drug is gliclazide?	1. Sulphonylurea	Bold to pass
Sulfonyl Ureas	2.	Describe the mechanism of action of	2. Stimulates insulin secretion from functional pancreatic	Bold
Subject: Pharm		sulfonylureas.	beta cells	
			 Binding of sulphonylurea to receptor inhibits 	
LOA: 1			potassium efflux causing extracellular depolarisation	
			Results in opening of voltage gated calcium channels	
			Calcium influx causes release of preformed insulin	
			3. Administered orally – good oral bioavailability (80%)	
			Protein bound – volume of distribution ~ 20L	
	3.		Hepatic metabolism to inactive metabolites	Bold
		gliclazide?	Half life approx. 12 hours	
			Predominantly renally excreted (80%)	
			4. Hypoglycaemia	
			GI upset – nausea, vomiting, abdominal pain, diarrhoea	
	4.		Rash/pruritis	Hypoglycaemia plus one
		gliclazide?		

ACEM PRIMARY VIVA C Friday Morning Session 3 Candidate Number:

Stem: A 40 year-o	ld man develops a dystonic reaction followir	ng a metoclopramide injection. Starting with pharmacolog	ý
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Benztropine Subject: Pharm	How does metoclopramide cause a dystonic reaction?	Metoclopramide is a dopamine antagonist and causes an imbalance in the anticholinergic/ dopamine transmission in the basal ganglia.	Bold
LOA: 1	You treat the dystonic reaction with benztropine. What is its mechanism of action?	Blocks the muscarinic cholinergic receptors; an antimuscarinic agent.	Bold
	What are the potential side effects of benztropine?	Tachycardia, sedation, mydriasis, urinary retention, dry mouth	Knows 3
Stem: Moving on t	to Anatomy. Intravenous access is obtained		
Question 2 Forearm (photo) Subject: Anat LOA: 1	On the photo please identify the major veins that can be seen.	From proximal to distal 1; basilic v 6; cephalic v 13; median cubital v 14; median forearm v.	2 req'd
	What other vascular structures can you identify?	4; brachial artery 21; radial a 22; ulnar a a) Superficial	Brachial and one other req'd
	Describe the venous drainage of the hand and forearm	 Dorsal venous network, and superficial palmar venous arch drains to either the basilic v ulnar side or cephalic v radial side of the forearm (highly variable distribution). b) Deep Deep venous palmar arch drains to paired radial veins and paired ulnar veins which accompany the arteries of the same name. Interosseous veins unite with radial and ulnar veins All terminate into the brachial veins as they leave the forearm 	Mention of superficial and deep systems and mention of venae comitantes (or principle)

Stem: Moving onto	Pathology. The man has sickle cell diseas	e.	
Question 3 Sickle Cell Disease Subject: Path	1. What is sickle cell disease?	Hereditary blood disorder Haemoglobinopathy	Bold (Prompt: is it congenital or acquired?)
LOA: 2	2. What are the major pathological manifestations of sickle cell disease?	 Haemolysis/Haemolytic anaemia Microvascular occlusions (crises/Tissue ischaemia = severe pain in affected organs eg bones, lungs, liver, spleen) Splenic enlargement, infarct and dysfunction (Increased susceptibility to infection – encapsulated organisms [eg strep pneumonia, haemophilus influenza]) 	2 of 3 to pass 2 of 5 Bold to pass
	3. In general how are haemolytic anaemias classified?	Infidenzaj) Inherited genetic defects (RBC Membrane [spherocytosis], enzyme deficiencies [G6PD], haemoglobinopathies [thalassaemia, sickle cell disease]) Antibody mediated destruction (transfusion reactions, autoimmune) Mechanical trauma (Microangiopathic haemolytic anaemias [HUS, DIC, TTP], cardiac valves) Infections of red cells (malaria) Toxic (envenomation)	

Stem: Movin	g onto Physiology in a NORMAL lung.		
Question 4 Regional Gas Exchange Subject:	 What happens to the V/Q ratio from top to bottom of the upright lung? Prompt: What happens to the relative values of ventilation and perfusion? 	 Both ventilation and perfusion increase with blood flow (perfusion) (Q) increasing more than ventilation (V) and this results in V/Q ratio DECREASING down the lung. 	 3 of 3 bold to pass (be able to explain concept).
Phys LOA: 1	 Explain the reasons for the normal Alveolar-arterial 0₂ difference? 	 2. Normally 5-10 mmHg. A-a Gradient = measure of the difference between alveolar and arterial concentration of O₂ Even though P Alv O₂ at apex 40 mm Hg above base, most of blood flow (Q) comes from base where P Alv O₂ is low -> decrease in P Art 02 Shunt: Bronchial blood & coronary blood Also non-linear shape of 02 dissociation curve means that addition of small amount of shunted blood with low O₂ concentration greatly decreases PO₂ of arterial blood and units with high PO₂ have little effect on O₂ concentration because curve is flat at high O₂ concentration 	2. Bold.
	(Extra question = formula for A-a Gradient)	$PA02 = PI02 - \frac{PAC02}{R} + F$	

Stem: A 6 year old boy has	s sustained a laceration to the sole of his foot. It is to be	repaired under ketamine sedation. We will start with Pharmacology.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	 What is the mechanism of action of ketamine? 	Antagonism of NMDA (subtype of glutamate) receptors. Inhibits reuptake of catecholamines and serotonin	Bold
Ketamine (pp 444-445) Subject: Pharm LOA: 1	2. What are its clinical effects?	Dissociative anaesthetics . Profound analgesia, stimulate sympathetic nervous system, bronchodilatation, minimal respiratory depression, stable CVS. increased Cerebral bd flow, partial amnesia, nystagmus	Bold +2
	3. What are its adverse effects? [Prompt- Are there any airway concerns?]	Unpleasant emergence reaction (eg vivid dreams or hallucination), laryngospasm, increased salivation, vomiting, myoclonus	Bold
	 Give an appropriate route and dose for procedural sedation in this child? [What other routes are available?] 	1-2 mg/kg IV, 4-10 mg/kg IMI	Can state either IV or IM dose
	re, he becomes hypoxic and requires assisted ventilation		
Question 2 Lung volumes and curves (West pp 13-16) Subject: Phys LOA: 1	 Draw a diagram that demonstrates the components of total lung volume. 	Should correctly include TLC, VC, FRC, TV, RV, IRV, ERV	Bold to pass TLC, VC, FRC, TV, RV correct
	 In an adult, what are the typical volumes of these components? [TLC, VC, RV, FRC and TV] 	TLC ~7000ml, VC ~4500 to 5000 mL, RV ~1200 mL, FRC ~2400 mL, TV ~500mL	2/4 (reasonable approximations)
	3. Which lung volumes can be measured in the ED?Extra:How are the other lung volumes measured?	Spirometer for FEV1 and FVC. TV on ventilator Helium dilution or body plethysmography for TLC, FRC and RV	1/2 spiromoter

Stem: Once he has stabilis	ed the repair continues. We will now move to Anatomy.		
Question 3 Sole of foot (photo) Subject: Anat LOA: 1	1. Identify the structures in this photograph?	<u>Medial to lateral</u> Abd hallucis (2); Fibrous flexor sheath (5); Flexor hallucis longus (11); Medial plantar nn (19/20); lateral plantar nn (14); Lateral plantar aa (13); Flexor digiti minimi brevis (7); Abd. Digiti minimi (1)	4/8 of this list
	 You decide to perform a nerve block at the ankle. Describe the cutaneous nerve supply of the sole of the foot 	Posterior tibial nerve - supplies sensation to most of volar foot and toes Medial, and lateral plantar nerves (terminal brs of tibial nn) Sural nerve - supplies lateral border (volar and dorsal) of foot Calcaneal branches (tibial and sural nn) supply heel	Bold
	3. What is the surface anatomy of these nerves at the ankle joint?	Posterior tibial nerve- runs with posterior tibial aa - located on medial aspect ankle between medial malleolus and Achilles tendon Sural nerve - located on lateral aspect of ankle between Achilles tendon and lateral malleolus	Bold
Stem: Once the procedure	has finished, his mother asks you about the healing pro-	cess. We will now move to Pathology.	
Question 4 Cutaneous wound healing (pp102-108) Subject: Path LOA:1	 Describe the phases of cutaneous wound healing? 	1.Inflammation, proliferation, and maturation . Phases overlap, and separation arbitrary. The initial injury -> platelet adhesion and aggregation + formation of clot on wound surface -> <i>inflammation</i> . <i>Proliferative</i> phase -> formation of granulation tissue, proliferation and migration of connective tissue cells, and re-epithelialization of the wound surface. <i>Maturation</i> involves ECM deposition, tissue remodelling + wound contraction.	2 of 3 phases in bold with correct descriptions to pass
	2. What factors influence cutaneous wound healing?	 2.Systemic factors: •Nutrition. Protein deficiency and vitamin C deficiency, -> retard healing. •Metabolic status : Diabetes mellitus, -> delayed healing •Circulatory status: Inadequate blood supply or drainage (arteriosclerosis or varicose veins. •Hormones eg. glucocorticoids influence various components of inflammation, also inhibit collagen synthesis. Local factors: •Infection single most important cause of delay in healing, •Mechanical factors, (early motion of wounds). •Foreign bodies impede healing. •Size, location, and type of wound (mechanism of injury). 	2 systemic and 2 local factors to pass
	3. What is wound contraction?	3.Wound contraction generally occurs in large surface wounds . The contraction helps to close the wound by decreasing the gap between its dermal edges + reducing the wound surface area . Important feature in healing by secondary union. Initial steps of wound contraction involve formation, at the edge of the wound, of a network of <i>myofibroblasts</i> .	Bold to pass

Candidate Number:

Stem: A 70 yo woman ca	Ils an ambulance for chest pain. She is administered Aspir	in en route to hospital. We will start with Pharmacology	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Aspirin Subject: Pharm LOA: 2	 Outline the mechanisms of action for aspirin. 	 Irreversible non-selective cyclooxygenase inhibition (Cox 1 and 2) resulting in (a) In platelets irreversible inhibition of COX 1 results in reduction in thromboxane A2 and inhibition of platelet aggregation for the life of the platelet (10 days), (b) In tissues inhibits prostaglandin synthesis (COX2). Results in anti- inflammatory action, Analgesic, and antipyretic effects. 	Bold Need to mention platelet effect (Cox1) AND tissue (COX2) anti- inflammatory or analgesic effect.
	2. Describe the pharmacokinetics of aspirin.	Rapidly absorbed from stomach and intestine, aspirin hydrolysed to salicylic acid in plasma and blood, peak plasma level within 1-2 hrs. Serum half- life of aspirin 15 minutes, low protein binding, saturable metabolism with increasing doses (switches from first to zero order metabolism). Urinary alkalinisation increases excretion of salicylate and it's conjugates.	Bold plus 2
	3. Outline the adverse effects of aspirin.	GI upset, Gastrointestinal bleeding from gastritis or peptic ulceration , hepatotoxicity, hypersensitivity reactions (asthma, angioedema, rash), prolonged bleeding time from platelet inhibition.	Bold + 1 other.
Stem: She has a history of	f coronary artery disease. Moving onto Pathology.		
Question 2 Atherosclerosis Subject: Path LOA: 1	 What are the systemic and local factors that lead to atherosclerosis? 	 Hypertension, hyperlipidemia, toxins from cigarette smoke, homocysteine, infectious agents. Inflammatory cytokines (e.g., tumor necrosis factor [TNF]) can also stimulate pro-atherogenic patterns of endothelial cell gene expression. The two most important causes of endothelial dysfunction are <i>hemodynamic disturbances and hypercholesterolemia</i>. Local flow disturbances (e.g., turbulence at branch points) leads to increased susceptibility of certain portions of a vessel wall to plaque formation. 	1. Bold to pass
	2. Which arteries are most often affected by atherosclerosis?	2. Lower abdominal aorta, the coronary arteries, the popliteal arteries, the internal carotid arteries, and the vessels of the circle of Willis.	2. 3 of 5 bold to pass
	3. How does an atherosclerotic plaque suddenly cause symptoms?	3. Rupture, ulceration, or erosion of the intimal surface of atheromatous plaques exposes the blood to highly thrombogenic substances and induces thrombosis. Such thrombosis can partially or completely occlude the lumen and lead to downstream ischemia Haemorrhage into a plaque. Rupture of the overlying fibrous cap, or of the thin-walled vessels in the areas of neovascularization, can cause intra-plaque haemorrhage. Atheroembolism: Plaque rupture can discharge atherosclerotic debris into the bloodstream, producing microemboli. Aneurysm formation: Atherosclerosis-induced pressure or ischemic atrophy of the underlying media, with loss of elastic tissue, causes weakness resulting in aneurysmal dilation and potential vessel rupture	3. 2 of 4 bold to pass

Stem: She has a history of	palpitations. Moving onto Physiology.		
Question 3 Ventricular Tachycardia Subject: Phys LOA: 1	Draw and label the membrane potential of normal pacemaker tissue	Angle influx of Ca ^{2*} Depolarization Prepolarization Slow influx of Na [*] Prepolential (mV) -60 -60 -60 -60 -60 -60 -60 -60	Must identify fast upslope being due to Ca influx and repolarisation due to K efflux plus presence of pre-potential
	By what mechanisms can tachyarrhythmias be generated?	Increased automaticity (AT,VT) Accessory pathways (WPW) Re-entry loops (VT) Early afterdepolarisations (torsade de pointes) Delayed afterdepolarisations (as in digoxin toxicity)	Automaticity plus one other
	What conditions may predispose to increased automaticity?	IHD Previous repair of congenital heart disease (scar tissue) Structural heart disease Channelopathies (congen or acquired) Electrolyte imbalances (K, Mg, Ca) Sympathomimetic agents Infiltrative cardiac diseases	Mention at least one condition
Stem: She is hypotensive a	I and this ECG is performed.		
Clinical Building Block – ECG	What rhythm does it show?	Broad complex regular tachycardia consistent with VT. Rate approximately 180bpm.	Must identify that broad complex, regular tachycardia or VT
Stem: Following successfu	DC cardioversion, she is still hypotensive and a central	venous catheter is inserted for inotrope administration. Moving onto	Anatomy.
Question 4 Thoracic Inlet (photo) Subject: Anat LOA: 2	1. Identify the vascular structures in this photo.	1. Left common carotid aa (14); Right common carotid (19); Brachiocephalic trunk (4); Right subclavian aa (21); Right brachiocephalic vv(18); Left brachiocephalic vv (13); Subclavian vv (24); Left Internal jugular vv (8) Thyrocervical trunk (32)	5/9 to pass
	2. What <i>important</i> structures may be damaged during insertion of an IJ line?	2. Carotid artery , Phrenic Nerve, Brachial plexus, Pulmonary dome, Thoracic duct, Trachea, Subclavian vessels	Bold plus 1
	3. What clinical complications may occur from damage to these structures?	Ptx, Haemothorax, hydro/chylothorax, stroke, Air embolism,, bleeding, Haematoma=> airway obstruction., AV fistula, etc	Appropriate example for each
	[What other complications can occur from central line insertion?]	Line misplacement/misdirection, arrhythmias, Infection, Thrombosis/PE pericardial tamponade, catheter loss/embolus, wire knotting	

Friday Moring Session 3 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Stem: A CT brain is perfo	rmed		
Clinical Building Block: CT Brain	What is the major abnormality shown on her CT?	Right sided Subdural with midline shift	Side Subdural
Stem: We will now move	onto Anatomy (use the abnormal CT brain for Anatomy)		A.
Question 1 CT Brain Subject: Anat LOA: 1	 Could you identify some normal structures on this head CT? 	Lobes: frontal, temporal, parietal, occipital Lat ventricle : anterior and posterior horns; 3 rd ventricle Caudate nucleus; Lentiform nucleus (putamen & globus pallidus) Thalamus; Anterior & posterior limbs of internal capsule Septum pellucidum; Falcx	5 structures 3 major vessels + detai
	2. What is the arterial supply of the brain?	ACA area anterior to anterior horns lat ventricle (frontal and parietal lobes medially and superiorly) MCA area between the ant & post horns LV (most of lateral surface anterior, parietal, and temporal lobes) PCA area posterior to posterior horn LV (Inferior and medial aspects of occipital and temporal lobes)	
	-	1 . Subdural blood comes from damage to bridging using between the busin and	Dridging veine
Stem: Moving onto Patho Question 2 Traumatic Brain Injury Subject: Path LOA: 1	 Which type of vessels have been damaged to produce the subdural blood seen on this CT? Which groups of patients are most at risk for SDH and why? 	the venous sinuses (displacement of the brain with in trauma can tear the veins at the point where they penetrate the dura to enter the sinuses) -> blood between the dura and the arachnoid.	Bridging veins Elderly
Question 2 Traumatic Brain Injury Subject: Path	 Which type of vessels have been damaged to produce the subdural blood seen on this CT? Which groups of patients are most at risk for 	 the venous sinuses (displacement of the brain with in trauma can tear the veins at the point where they penetrate the dura to enter the sinuses) -> blood between the dura and the arachnoid. 2. Elderly- veins stretched and more movement due to brain atrophy 	

Stem: Her GCS has fallen t	o 8. We will now move onto Physiology		
Question 3 CNS Autoregulation / Cushing response Subject: Phys LOA: 1	1. What factors affect cerebral blood flow?	 MAP at brain level MVP at brain level ICP Viscosity of the blood Local constriction/dilatation of cerebral arterioles 	Pass in bold 3/5
	2. What is the mechanism of the Cushing response?	 2. Increase in ICP results in Decr CBF – ischaemia of VMA – SNS output incr - Incr systemic BP – stimulation of baroreceptors – stimulation of vagal outflow – decr HR and RR 	Explains concept
	3. What is the Monro-Kellie doctrine?	3. The volume of blood (75mL), CSF (75mL) and brain (1400g) in cranium must be relatively constant. Negative effects on these therefore if additional intracranial volume eg SDH / EDH occurs	Explains concept
Stem: She has a seizure ar	d you decide to treat her with Phenytoin. We will now m	nove onto Pharmacology.	
Question 4 Phenytoin Subject: Pharm LOA: 1	 What is the mechanism of action of phenytoin? 	Primarily Na+ channel blockade/reduced neuronal Na+ conductance and prolongation of inactivated state of Na+ channel. Reduces Ca++ influx into cells and decreases glutamate release and enhances GABA release. Inhibit the generation of rapidly repetitive action potentials	Bold
	2. What are the risks associated with intravenous phenytoin administration?	Hypotension and bradycardia with rapid infusion (due to diluent). Allergic reactions. Limit rate of infusion to maximum 50mg/min (30-60 minutes). Less likely with fosphenytoin Local necrosis if extravasation	Bold to pass.
	 Describe the elimination kinetics of phenytoin and why it is important clinically? 	Dose-dependent elimination. First order elimination at low serum concentrations, however elimination becomes zero-order as concentration rises with prolongation of elimination half-life. Implication- Small recurrent dose increase may => toxicity	Explains concepts
	4. What are the common features of acute overdose/intoxication with phenytoin?	Sedation, coma, nystagmus, ataxia, cerebellar toxicity. No cardiac toxicity with ingested overdoses of phenytoin.	2 to pass

ACEM PRIMARY VIVA A Thursday Morning Session 1

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Clinical Building Block:	Please describe the abnormalities on this CXR	Surgical emphysema, Pneumothorax, RML changes ? consolidation or contusion	Bold to pass
Moving on to Physi	iology		
Question 2 Frank- Starling Curve Subject: Phys LOA: 1	 Please draw the Frank Starling curve as it relates to human cardiac muscle Prompt: What effect does EDV have on SV? 	Proce-frequency relation Circulating categorialistics Sylingationic and perve impurses intrinoic depresants categorialistic perve impurses intrinoic depresants categorialistic categorialistic depresants categorialistic depresants categorialistic depresants categorialistic depresants categorialistic depresants categorialistic depresants	Q2.1 – to pass must be able to draw the FS curve including the hump and correctly label axes (SV or Pressure on y axis)
	2. What factors influence the Frank- Starling curve?	 2. Circulating catecholamines; inotropes, hypoxia, hypercarbia, acidosis, pharmacol depressants; loss of myocardium; intrinsic depressing; symp NS & PSym, fluid status 	Q2.2 – 4 factors with correct influence

Question 3	1. What are the sequence of events in	a. Vasoconstriction: arteriolar, reflex neurogenic,	Q3.1 – to pass identify 3/4 steps
Haemostasis	haemostasis after a vascular injury?	enhanced by endothelin	of hemostasis (bold) in correct
Subject: Path		b. Primary haemostasis: extracellular matrix	sequence
	Prompt: Is there any particular sequence	exposed, pl adherence/activation pl aggregates &	
LOA: 1	to the events?	forms plug	
		c. Secondary haemostasis: Tissue factors exposed,	
		Fac III, thromboplastin, Fac VII, platelet plug	
		consolidated - thrombin/fibrin generated	
		d. Thrombus & antithrombotic effect – fibrin	
		polymerises to form permanent plug, tPA regulates	
	2. What laboratory tests are used to	Prothrombin time – extrinsic pathway factors VII, X,	Q3.2 – to pass identify test,
	assess the function of the different	II, V, fibrinogen (including vit K dependent factors)	what pathway it is testing and
	pathways of the coagulation cascade?	Partial thromboplastin time – intrinsic pathway	identify which one is vit K
	Prompt: Which one is vitamin K	factors XII. XI, IX, VIII,X, V, II, fibrinogen	dependant
	dependant		
	o Pharmacology. It is decided to reverse his anti-	-	1
Question 4	1. What is vitamin K?	Fat-soluble substance in leafy vegetables; usually	Q4.1 Bold to pass
Vitamin K and warfarin		synthesised by gut bacteria. Vit K1(food) & K2(bact)	
Subject: Pharm	1		
LOA: 2 and 1	2. Please describe its mechanism of action	Warfarin – coumarin anticoagulant, prevents	Q4.2 to pass need concept of
	in reversal of warfarin anticoagulation	reductive metabolism of inactive vit K to active form so produces biologically inactive VII, IX, X,	warfarin producing biologically inactive factors, vit K
	Prompt: How long does it take for the	prothrombin, protein C&S	overcoming this, & delayed
	onset of action	Vit K1 confers biologic activity upon prothrombin	onset of action
		and factors VII, IX, X by participating in their	
		postribosomal modification.	
		Onset of action 6 hours, complete by 24 hours	

Question 5	Demonstrate on the model the arterial	ary survey is undertaken and his facial wounds are clo Facial artery (61) – arises External Carotid a. –	Bold to pass and demonstrate
Face Dissection (model)	supply to the face?	contacts submandibular gland, hooks up over mandible anterior to masseter m. then a tortuous	on mode!
Subject: Anat		course to the medial angle of the eye.	
LOA: 2		Transverse facial artery(62)- anastomoses with above	
	You are concerned about injury to his facial nerve. Using the model can you demonstrate the branches of the facial nerve? Prompt: Start from the parotid gland	Facial n. (66) – motor supply of the face 5 branches – Temporal n(67), Zygomatic n (68), Buccal n (69), Marginal Mandibular n (70), Cervical n (Exits BOS at stylomastoid foramen)	Bold + 3/5 branches
	What is the function of the facial n.?	Motor supply to the face Muscles of facial expression Taste anterior 2/3 rds tongue	Bold
	What is the sensory nerve supply of the face? Prompt: What are the branches?	Trigeminal n. (5th Cranial n) - 3 branches : Ophthalmic , maxillary, mandibular NB – not on model – but candidate can map sensory division supply	Bold + 2/3 branches

ACEM PRIMARY VIVA A Thursday Afte

Thursday Afternoon Session 2

Candidate Number:

AGREED

MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Heart Failure	What is heart failure?	When cardiac function is impaired and/or the heart is unable to maintain a cardiac output sufficient for the body's metabolic needs.	Bold to pass
Subject: Path			
LOA: 1	Please classify the types of heart failure? Prompt: Examples?	 Pump failure: Systolic dysfunction (Contractile dysfunction) eg myocardial contractile dysfunction secondary to ischaemia, AMI, pressure or volume overload, dilated cardiomyopathy. Diastolic dysfunction (Inadequate filling) eg LV hypertrophy, myocardial fibrosis, amyloidosis, pericarditis. Others: arrhythmias, regurgitant flow eg MR, outflow obstruction eg AS, HOCM 	One of the classifications with examples
		Left heart failure (IHD, HT, Valvular diseases eg AS, rheumatic heart disease, myocardial disease) Right heart Failure (eg secondary to left heart failure, PE, Pulmonary HT etc)	
	What are the clinical features of heart failure? Prompt: What symptoms or signs from other organ systems might occur with heart failure?	Lung –breathlessness, orthopnoea, PND, APO, pleural effusions Cardiac – 3 rd HS, gallop, displaced apex beat, AF, murmur, JVP elevation Renal – RAA activation – with fluid retention, pedal oedema, AKI Brain – confusion secondary to hypoxia Hepatic –engorgement, ascites, cirrhosis(late)	3/5 organ system symptoms to pass

This woman also has cl	hronic renal failure. An ECG is obtai	ined.	
Question 2 Clinical Building Block: ECG –	What are the abnormalities on the ECG? What is the likely diagnosis?	Widespread peaked T waves, mild tachycardia, some inverted T waves, ST elevation Suggestive of hyperkalaemia	Bold
hyperkalaemia			
Stem: Moving onto Phy	ysiology		
Question 3 ECG and hyperkalaemia & Renal handling of K+ Subject: Phys LOA: 1	What are the ECG changes in Hyperkalaemia?	Peaked T waves (repolarisation abnormality) P wave flattening, Loss of P waves (progressive atrial paralysis) QRS widening / bizarre QRS (Conduction abnormality) Sinusoidal ECG Ventricular arrhythmias Asystole	3/6 to pass
	Describe the way the kidney handles K ⁺	K ⁺ is filtered at the glomerulus. Most filtered K ⁺ is actively reabsorbed at the proximal tubules.	Bold to pass
	Prompt: What happens to K ⁺ in		
	Proximal Tubule? Prompt: What happens to K ⁺ in distal tubule?	K ⁺ is then secreted into the fluid by the distal tubules. (Rate of K ⁺ secretion is proportionate to distal tubular fluid flow) At Distal tubule: K+ secretion is passive and Na ⁺ is reabsorbed.	
		In a healthy person: the amount of K ⁺ secreted = K ⁺ intake and K balance is maintained	
		Normally > 93% K ⁺ is reabsorbed by the kidneys. K ⁺ secretion & excretion alter depending on serum K ⁺ and H ⁺	

Question 4	What is digoxin's mechanism	Ca accumulation in cells (due Na- K+ ATP block, Na in cells drive	2/3 bold + one other
Digoxin	of action in heart failure	Na/Ca exchange) leads to	
Subject: Pharm .OA: 1		a) increased contraction strength,	
JOA: 1		b) > stroke vol/ CO per beat- with smaller EDSV, small heart, reduced RHt pressures/ volume	
		c) slower HR- >er stroke volume (partic if AF), via effects on	
		parasympathetic fibres/AV node	
	Why are patients in heart	a) poor renal function from low C/O,	To pass 2 including 1 bold
	failure prone to digoxin	b) potential dehydration and/or other drug interactions (e.g.	
	toxicity?	ACE/ diuretics/ spironalactone/ ca channel blockers)	
		 c) potential effects on effective vol of distribution d)low K+ from other ht failure meds esp diuretics (makes pts 	
		higher risk from dig/toxicity)	
		e) poor cardiac reserve/ output, altered digoxin handling	
		during acute HF/ fluid distribution changes/other major illnesses	
	What are the features of	a) high K (assocd strongly with mortality)	To pass hyperkalaemia + at
	digoxin toxicity	b) yellow/ green (or other) colour vision	least 2 others from 2
		c) GI- D and V, nausea/ malaise-anorexia/	different groups.
	Prompt: Any features from other organ systems	d) arrhythmias from > automaticity and also Av node block (partic brady but R on T as well)	
	other organ systems	e) severe heart blocks- partic if previous blocks , worsening	
		failure, low BP	
		f) CNS, tiredness -lethargy- headaches, paraesthesias,	
		Candidate may differentiate acute vs chronic	

Stem: Moving on t			
Question 5 Heart Model Subject: Anat LOA: 1	1.Using the model identify the great vessels and branches which enter and exit the heart	Superior vena cava - R brachiocephalic v, L brachiocephalic v Inferior vena cava Ascending aorta - brachiocephalic trunk, L common carotid artery, L subclavian artery	(bold to pass)
		Pulmonary trunk and pulmonary arteries Pulmonary veins	
	2. Identify the main coronary arteries and their branches	RCA LCA Circumflex LAD/ant interventricular Marginal	4/5 to pass
	3. Which areas of the heart is supplied by the LCA?	Most of the left atrium Most of left ventricle Part of right ventricle Intraventricular septum AV bund le (SA node in 40%)	Bold +2 to pass
	4. (If required)Describe the position of the heart in the left hemithorax	Inferior border lies on the diaphragm Apex is in the 5th ICS Base is against the Thoracic vertebrae T6 to T9	

ACEM PRIMARY VIVA A Friday Morning Session 3 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Clinical Building Block: Urine	Please describe the abnormalities.	High poly and RBC counts with +ve protein and blood (in the absence of epi-clean catch) indicates infection	Bold to pass
Microscopy	What is the most likely diagnosis?	In the clinical context c/w pyelonephritis +/- stone	
Question 2	What organisms cause	G-ve bacilli (>85%), endogenous organisms	G-ve & 3
Pyelonephritis	acute pyelonephritis?	E Coli, proteus, klebsiella, enterobacter, strep	organisms
Subject: Path		faecalis(enterococcus)	pass
LOA: 2	Prompt: what are the	Other: staph, fungi, (viruses in	
	most common?	immunocompromised and renal transplant patients)	
	What steps are involved	5 steps: 1. colonisation distal urethra 2. entry into	Need to
	in ascending infection of the urinary	bladder 3 . urinary tract obstruction / stasis of	explain the
	tract?	urine 4. vesicoureteric reflux 5. intrarenal reflux	concept clearly
	What conditions predispose to acute pyelonephritis?	Urinary tract obstruction Instrumentation	4/9 to pass
	pyeionepinitis	Vesico-ureteric reflux	
		Pregnancy	
		Female upto 50yrs	
		Males >S0 yrs	
		Abnormalities- congenital/acquired	
		DM, Immunosuppression	

Question 3	What is normal renal blood flow?	Renal blood flow = approx 1250 mL/min	Bold (accept 1000 – 1500)
Renal Circulation			bold (accept 1000 - 1500)
Subject: Phys	What substances influence renal blood	Noradrenaline-constriction,	2/5 substances + correct
LOA: 1	flow and how?	Dopamine, ACh -dilatation	action
		Angiotensin II – constricts afferent and efferent arterioles	
		PGs-increase flow in cortex and decrease in medulla	
	How can renal blood flow be measured?	1. Fick principle (amount of a substance taken up per unit time divided by arterio-venous	Conce pt/ Princi p le
	Prompt: What substance can be used to	concentration difference)	
	measure renal plasma flow?	 2. PAH (or any substance that is excreted, not metabolised or stored, doesn't affect flow) is used to measure effective renal plasma flow (90% cleared) ERPF = Clearance of PAH = UV/P = 630 mL/min 3. Actual renal plasma flow = ERPF/0.9 = 700 mL/min 4. Renal blood flow = RPF x 1/1-Hct (Hct = 0.45) 	

Question 4	1. Describe the mechanism of action of	Irreversible inhibitor of protein synthesis.	Bold to pass
Gentamicin	gentamicin	Binds 30S ribosome & inhibits protein synthesis by: 1)	
Subject: Pharm		interfering with initiation complex of peptide	
LOA: 1		formation 2) Inducing misreading of mRNA thus	
		producing non functional protein; 3) causing break up	
		of polysomes into non-functional monosomes	
		Additional information: Enters cell by passive diffusion	
		via porin channels across outer membrane, then	
		enters cytoplasm by o2 dependant active transport	
		process (transport coupled to a proton pump the	
		transmembrane electrochem gradient supplies the	
		energy)	
		Low ecf pH & anaerobic conditions inhibit transport as	
		reduces gradient; transport enhanced by cell wall	
		active drugs eg penicillin, vancomycin.	
	2. What are the benefits of once daily	Concentration dependant killing (at increased conc	Bold to pass
	dosing of gentamicin?	kill increased no of bacteria at a more rapid rate);	
	Prompt how does this improve clinical	Post antibiotic effect (effect lasts longer than	
	effectiveness?	detectable serum levels);	
		Reduced toxicity (as toxicity is time & conc	
		dependant time above critical level will be longer	
		with multi dose than single dose schedule);	
		less nursing time; OPD therapy possible; convenience	
	3. What micro-organisms is it effective	Gram –ve bacteria – E. coli, Pseudomonas, Proteus,	Bold + 3 organisms
	against?	Klebsiella, Serratia	
	Prompt: What group of organisms	Gram +ve- Staph, Strep- with beta lactams, vancomycin	
		No anaerobic activity	

Stem: Moving ont	to Anatomy. A KUB X-ray is performed		
Question 5 AXR - ureters Subject: Anat	1. Could you point out on the xray the course of the L ureter	From hila of kidney L1-2, along transverse processes, just medial to tips of transverse processes of lumbar vertebrae, on ant surface of psoas muscles, pass over pelvic brim around SI	Bold
LOA: 2		joint, run along lateral wall of pelvis till ischial spine, then medially to enter bladder	
	2. Where in the ureters is a stone likely to lodge	PUJ, pelvic brim, VUJ	2/3
	3. Where else could a stone be present	Kidneys, bladder	1/2
	4. (only if required) What other structures can you identify on the xray (not required for pass)	Liver, Large Bowel, Lumbar spine, Pelvis, Femoral heads, Ribs, Psoas	

ACEM PRIMARY VIVA B Thursday Morning Session 1 Candidate Number:

Stem: An 18 year old w	voman presents to the ED, 3 days following a self-	inflicted wrist injury. She complains of numbness in her hand. We will st	tart with Anatomy
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Wrist dissection (photo) Subject: Anat LOA: 1	(a) Identify the structures seen in this image	Median nerve (16) + branches (17, 18, 19) Ulnar nerve (25) + branches (24, 26, 27, 28) Ulnar artery (23) Thenar muscles – APB (2), FPB (13) Adductor pollicis (4), Lumbricals (7, 22) FCR (8), FCU (9), BR (5), FDS (12). FDP (11)	Median nerve, ulnar nerve, AND 6 out of 10 structures
	(b) Describe the median nerve supply in the hand	Motor – LOAF (1 st & 2 nd lumbricals, OP, APB, FPB [superficial head]) Sensory – palmar surface of lateral 3½ digits & dorsum of distal halves of these digits	Both motor (LOAF, 2 out of 4 muscles needed to pass) and sensory
	(c) How would you clinically test the median nerve function in the hand?	Motor – thumb opposition (OP) or thumb abduction (APB) [thumb flexion not reliable as deep head of FPB supplied by ulnar nerve] Sensory – sensation over volar aspect of lateral 3½ digits [sensation over thenar eminence preserved as supplied by palmar cutaneous branch of median nerve]	Both motor and sensory
Stem: Moving onto Ph	ysiology.		
Question 2 Resting Membrane Potential Subject: Phys LOA: 1	(a) Define resting membrane potential of a neuron	Potential difference across cell at rest, as a result of separation of positive and negative electronic charges across cell membrane (inside negative relative to outside of cell). Normal RMP of neuron = -70mV	Bold
	(b) Explain how resting membrane potential is createdPrompt: Why is RMP negative on the inside of a cell?	Main ions involved – Na ⁺ & K ⁺ Na ⁺ -K ⁺ -ATPase pump creates electrochemical gradient by pumping out 3 Na ⁺ for every 2 K ⁺ pumped in Na ⁺ & K ⁺ diffuse down concentration gradient across permeable cell membrane (K ⁺ diffuses from inside to outside of cell; opposite for Na ⁺) Cell membrane more permeable to K ⁺ at rest → that's why RMP is close to equilibrium potential for K ⁺ RMP represents an equilibrium state; driving force for ions down concentration gradient = driving force down electrical gradient	Bold
_	(c) Why is a cell more excitable in hyperkalaemia	RMP moves closer to threshold potential for eliciting action potential (becomes less negative on the inside of cell).	Bold

Question 3	(a) Name some common bacteria that cause	Staphylococcus aureus	Staph aureus, Strep and 1 other
Staph aureus	wound infections	Streptococcus pyogenes	
Subject: Path		Clostridium perfringens	
LOA: 1		Aerobic Gram negative bacilli	
		Pseudomonas aeruginosa	
		Clostridium tetani	
	(b) What diseases are caused by	Skin / soft tissue : cellulitis, impetigo, abscess (furuncle, carbuncle),	3 skin and 3 non-skin infections
	Staphylococcus aureus?	folliculitis, paronychia, felon, lymphadenitis, necrotising soft tissue	
		infection, scalded skin syndrome	
		Pneumonía	
		Endocarditis	
		Osteomyelitis / septic arthritis	
		Food poisoning	
		Toxic shock syndrome	
	(c) Describe the clinical features of Staph.	Hypotension (shock), renal failure, coagulopathy, liver disease,	4 out of 7 (must have specific organs)
	Aureus toxic shock syndrome.	respiratory failure, generalised erythematous rash, soft tissue	
_		necrosis at site of infection	<u></u>
Stem: Moving onto	Pharmacology. Prior to surgery for debridement, Flu		
Question 4	(a) What micro-organisms are susceptible to	Staphylococci (including B lactamase producing), streptococci	Bold
Flucloxacillin	flucloxacillin	(not active against enterococci, anaerobes, Gram negatives, MRSA)	
Subject: Pharm	Prompt: is fluclox active against all Staph?		
LOA: 1	(b) What is the mechanism of action of	Inhibits bacterial growth by binding to active site of PBPs, interfering	Bold
	flucloxacillin	with transpeptidation of bacterial cell wall synthesis $ ightarrow$ cell death	
	Prompt : how does penicillin work	(bactericidal)	
	(c) Why is oral flucloxacillin given before	It is acid labile (inactivated by gastric acid), and binds to food	1 out of 2
	meals	proteins (decreasing absorption)	
	(d) What are the important side effects of	Liver (cholestasis), GI upset (Nausea, vomiting, etc), renal interstitia	Both bold to pass
	flucloxacillin?	nephritis, neutropenia/thrombocytopenia, allergy/anaphylaxis, serum sickness.	
	Extra question: What is the frequency of cross	Around 5-10%	Any % in range to pass
	allergenicity between flucloxacillin and cephalosporins		

AGREED MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	(a) What are the receptors involved in the	Central chemoreceptors, Peripheral chemoreceptors,	Bold & 3 others to pass
Control of Ventilation	control of ventilation?	Pulmonary stretch receptors, irritant receptors, J receptors,	
Subject: Phys		Bronchial C fibres, Nose and upper airway receptors, Joint and	
LOA: 1		muscle receptors, Gamma system, Arterial baroreceptors, Pain	
		& temperature receptors	
	(b) Where are the central chemoreceptors located?	200-400 μ m below ventral surface of medulla.	Medulla must be stated
	(c) How do these receptors function?	BBB permeable to CO ₂ ; relatively impermeable to HCO ₃ -	Bold concepts to pass
	Prompt : How do H ⁺ ions affect their function	\uparrow blood pCO ₂ \rightarrow \uparrow CSF pCO ₂ \rightarrow \uparrow H ⁺ in CSF	
		↑H ⁺ in CSF stimulates ventilation	
		\downarrow H ⁺ in CSF inhibits ventilation; causes cerebral vasodilation \rightarrow	
		enhance diffusion of pCO ₂ into CSF	
		CSF pH 7.32. Less buffering than blood, CSF pH changes more	
		for given pCO ₂ Prolonged pH changes compensated by HCO ₃ ⁻ transport across	
		BBB. (Chronic CO_2 retention has near normal CSF H ⁺)	
Stem: He requires intuk	ation and vecuronium is administered. Moving or		I
Question Z	(a)What is the mechanism of action of	Non depolarising neuromuscular blockade	Must mention blockade type, &
Vecuronium	vecuronium	Competitive antagonist for acethylcholine at nicotinic	either receptor type or ACh.
Subject: Pharm		receptors of neuromuscular junction	
-		Large doses will enter ion channel's pore directly $ ightarrow$ more	
LOA: 1		intense blockade	
		Also blocks prejunctional Na channels $ ightarrow$ interfere with Ach	
		mobilization at nerve endings	
	(b) Describe the pharmacokinetics of	Highly polar/ionic	4 of 6 bold to pass
	vecuronium	Poorly absorbed from GIT	
		Given IV	
	Prompt : what is its onset time, what is its	Onset within 1 min;	
	duration of action, how is it eliminated	Max effect at 3-5 mins	
		Duration of action : 20-35 mins	
		Short half life	
		Rapidly distributed to extracellular space	
		Small volume of distribution (~blood vol), Plasma protein	
		binding : 60-90%, Eliminated by liver (75-90%), rest by kidney	

	tion he requires inotropic support and a central lin		
Question 3	(a) Identify the venous structures in this	SVC (26), right brachiocephalic v (18), left brachiocephalic v	4 to pass
Anterior Neck Photo	photo	(13), subclavian v (24), internal jugular v (8), inferior thyroid v	
Subject: Anat		(7)	
LOA: 1			1
	(b) Identify the nerves in this photo	Phrenic nerve (17), right vagus nerve (22), right recurrent	3 to pass
		laryngeal nerve (20), left vagus nerve (15), sympathetic trunk	
		(28)	
	(c) What is the difference between the course	Right : hooks around subclavian artery	Both to pass
	of the right and left recurrent laryngeal nerve	Left : hooks around aorta	
		After looping, they ascend in trachea-oesophageal groove to	
		supply intrinsic muscles of larynx (except cricothyroid)	1
Stem: These are his coa	J agulation blood results		J
Question 4	What is the abnormality on this coagulation	Delayed clot formation in both the extrinsic (PT / INR) and	Must state coagulopathy / DIC with
Clinical Building Block:		intrinsic (APTT) systems. Fibrinogen low. Consistent with a	one example of possible cause
Coagulopathy	pione	consumptive coagulopathy/DIC	one example of possible cause
coaguiopatity			
	What could cause this	Sepsis, liver failure, malignancy, trauma, envenoming (Brown /	
		Tiger / Taipan) etc	<u> </u>
Stem: Moving onto Pat	hology		
Question 5	(a) What types of liver disease may result	Hepatocellular steatosis (fatty change) – reversible	1 reversible and 1 non-reversible
Cirrhosis	from chronic excessive alcohol consumption	Alcoholic hepatitis – reversible	
Subject: Path		Cirrhosis – non reversible	
LOA: 1		Hepatocellular carcinoma – non reversible	
	(b) What are the morphological features of	Occurs diffusely throughout the liver, parenchymal nodules	3 out of 5 bold to pass
	cirrhosis	(regenerating hepatocytes) surrounded by dense bands of	
	Prompt : what happens to liver cells when	fibrous scar, disorganised architecture, variable degrees of	
	chronically exposed to toxins or injurious	vascular / portosystemic shunting, elements of progression	
	agent	and regression	
			1
	(c) What are the possible sequelae of cirrhosis	Portal Hypertension, GIT Bleeding, Hepatic Failure,	Bold plus 3 others
	(c) What are the possible sequelae of cirrhosis	Portal Hypertension , GIT Bleeding, Hepatic Failure, Coagulopathy, Hepatocellular Ca, Hepatorenal Syndrome,	Bold plus 3 others

ACEM PRIMARY VIVA B Friday Morning Session 3 Candidate Number:

Stem: A motor bike accid	dent victim is transferred from a rural ED to a traur	ma centre. A chest X-ray is performed post intubation	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Clinical Building Block: CXR- Pul contusions	Describe the positive findings in this CXR.	Portable supine CXR, ETT insitu (2cm above carina), increased opacities in both lungs (interstitial & alveolar) – increased opacity in RLL & obliteration of right hemidiaphragm	Must be able to describe CXR, opacities. Pneumothorax difficult to exclude on supine film.
	What is the likely cause?	Pulmonary contusion (+/- haemothorax)	Must say pulmonary contusion
Stem: He is hypoxic. Mo			
Question 2 Oxygen uptake along the pulmonary	(a) In an alveolus, what factors affect oxygenation	Ventilation, perfusion, diffusion across the blood gas barrier and alveolar-pulmonary capillary pO ₂ gradient	3 Bold to pass
capillary Subject: Phys LOA: 1	(b) Describe the oxγgen uptake along a pulmonary capillary	Alveolar pulmonary capillary O ₂ gradient (Alveolar pO ₂ = 100mmHg, pulmonary capillary pO ₂ = 40mmHg), blood gas barrier thickness 0.3 microns, RBC transit time = 0.75s Under normal circumstances, O ₂ uptake is perfusion- limited (complete in 0.25s) & alveolar end capillary O ₂ difference is minimal. Rate of rise of end capillary pO ₂ is steep – O2-Hb dissociation curve	Must have knowledge of 3 of 4 concepts in bold. Numbers not required to pass.
	(c) How does hγpoxia affect ox y genation	Alveolar pulmonary capillary O ₂ gradient is decreased, O ₂ diffusion is decreased & rate of rise of pO ₂ for given O ₂ concentration in blood is less	Can draw graph to explain (West pages 28-29)
Stem: He is quadriplegic	and hypotensive. Moving onto Pharmacology. A N	loradrenaline infusion is commenced	<u> </u>
Question 3 Noradrenaline Subject: Pharm LOA: 1	(a) What receptors do NA act on	Predominantly α 1 receptor \rightarrow vascular smooth muscle constrictionAlso α 2 receptor (presynaptic) – inhibits NA release (negative feedback) Some effect on β 1&2 receptors (more potent effect on β 1)	Need to mention predominant α 1 and one other receptor.
	(b) How does NA increase blood pressure Prompt : what is the effect of NA on blood vessels	α 1 activity \rightarrow vasoconstriction $\rightarrow \uparrow$ total peripheral resistance $\rightarrow \uparrow$ DBP β 1 activity $\rightarrow \uparrow$ myocardial contractility $\rightarrow \uparrow$ SBP Overall rise in both DBP & SBP	Bold
	(c) How does NA affect the heart rate?	β 1 activity ↑heart rate. However compensatory baroreflex causes reflex bradycardia → therefore minimal change in HR	Bold

Question 4	(a) Identify this bone	C2 (axis)	Must say C2.
Bones – C1, 2			
Subject: Anat LOA: 1	(b) Describe its features	On C2; (1)body, (2)dens , (3)impression for alar ligament, (4)superior and inferior articular surface, (5)pedicle, (6)lamina, (7)bifid spinous process, (8)transverse process with foramen, (9)vertebral foramen	Bold + 4 other features
	(b) Name the ligaments that stabilize the atlanto- axial joint Prompt : how is the dens kept in place	Transverse ligament Superior & inferior longitudinal bane Alar ligaments Tectorial membrane (continuation of post long lig) Anterior atlanto-axial membrane (continuation of ant long lig) Posterior atlanto-axial membrane (continuation of lig flavum) Apical ligament	Transverse lig & 2 others
	(c) What movement occurs at the atlanto-axial joint	Rotation around vertical axis	Bold
Stem: Moving onto Par	thology		
Question 5 Spinal Cord injury including cellular injury as it relates to spinal cord Subject: Path	(a) What changes occur in the spinal cord after a traumatic injury	Acute phase : haemorrhage, necrosis, axonal swelling in the surrounding white matter at level of injury Late phase : area of neuronal destruction becomes cystic & gliotic, 2° wallerian degeneration involving long white matter tracts, liquefactive necrosis often seen in CNS	1 acute, 1 late
LOA: 2 and 1	(b) What are the features of irreversible injury at the cellular level	 Mitochondrial damage: Failure of oxidative phosphorylation → ATP depletion → failure of energy dependent cellular functions Membrane damage: Plasma membrane → loss of osmotic balance Lysosomal membrane → enzyme leakage → cell necrosis 	3 out of 4 bold
	(c) What are the acute clinical consequences of a cervical spinal cord injury Prompt: what happens in a high cervical level injury?	Complete or incomplete Spinal shock - Quadriplegia/flaccid paralysis, total anaesthesia, areflexia If above C4 → respiratory compromise (diaphragmatic paralysis) Neurogenic shock : hypotension, bradycardia, warm dry skin etc	Bold

Stem: A 20 year ol	d motor cyclist is brought to the ED with che	st injuries. He is asthmatic.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Stem: Let's start w	<u>rith Pharmacology. He has been given Salbuta</u>	amol nebulisers for his wheeze.	
Question 1	1. What is Salbutamol?	Salbutamol is a selective B2 agonist and used as a	A selective B2 agonist
Salbutamol		Bronchodilator	
Subject: Pharm			
	2. Describe the pharmacokinetics of	1. Absorption – Fast and complete (inhaled)	1. Absorption – Fast or complete (inhaled).
LOA: 1	salbutamol?	a. GIT – rapidly absorbed	2. Rapid onset of action
		b. Inhaled – Bronchodilation maximal within 15-	3. t1/2 3-6 hours
	(Prompt for t1/2)	30 min and persists for 3-4 hours.	(2 of 3 to pass)
		2. Metabolism – 50% 1^{st} pass. Sulphated in the	
		liver and metabolites excreted in the kidneys (also	
		excreted unchanged in renal. No metabolism in	
		lungs 3. t1/2 – 3-6 hours	
		5. (1/2 - 5-6 fiburs	
	3. Describe the pros and cons of the	1. Inhaled	Need to describe pros and cons of Inhaled
	different routes of delivery of	a. Spacer/inhaler	plus 1 other route
	salbutamol?	Pro: Targeted, low dose, minimise systemic side	
		effects. As effective as nebulised. No 1 st pass	
	Prompt: Is there any other route? (non-	metabolism	
	inhaled)	Con: Coordination and education required	
		b. Nebulised	
		Pro: Less coordination required and minimal	
		education	
		Con: Larger particles and hence dose required,	
		noisy (children get frightened), higher incidence	
		of systemic SE	
		2. Oral	
		Pro: Easier in very young/disabled. Longer t1/2	
		Cons: Big doses, high SE profile (tachycardia,	
		tremor, nervousness and weakness). Minimal	
		advantage to inhaled. 50% first pass metabolism 3. IV/IMI/SC – useful in severe asthma	
		Pro: No first pass metabolism	
		Con: Needle, painful, higher cost and SE profile	
		Contracture, paintal, inglier cost and 50 profile	,1

	d gases are done as part of his initial trauma	work up.	
Question 2 Clinical Building Block:	Please describe this ABG. On O2 – Fi02 60% P02 85 pCO2 123 pH 6.99 HCO3 28	Primary respiratory acidosis with CO2 retention and hypoxia	Primary respiratory acidosis with CO2 retention and hypoxia
Stem: Moving onto	Anatomy. Chest X-ray shows multiple rib fra	actures.	
Question 3 First rib Subject: Anat	 Please identify this bone and demonstrate its features (bold to pass) 	First rib Head/neck/shaft/ tubercle (articulates with TP of T1) /articulation with costal cartilage to manubrium /groove for subclavian vein (ant) and	RELATIONS AND ATTACHMENTS OF LEFT FIRST RIB The' costotransverse ligament Sympathetic trunk Supreme intercostal vein Ext/int intercostals
LOA: 1	Prompt: What's this? (scalene tubercle)	artery (posterior to scalene tubercle)	Superior intercostal artery T1 nerve root Scalenus medius Serratus anterior
	What are the important relations?	Apex of lung Subclavian vessels, intercostal vessels & ns Sympathetic trunk Lower trunk of brachial plexus (sup.)	Subclavius Costoclavicular Subclavius Costoclavicular ligament The under surface of the 1st rib is smoother. When the rib is laid
		Scalenus ant/ medius Intercostals, Serratus anterior, Subclavius	on a flat surface, the head touches the flat surface when the rib is the correct way up
Stem: Moving onto			
Question 4 Lung Volumes and Curves Subject: Phys LOA: 1	1. Draw a diagram that demonstrates the components of total lung volume.	Should correctly include TLC, VC, FRC, TV, RV, ERV	TLC, VC, FRC, TV, RV, ERV (3/6 to pass)

	2. What are the typical volumes?	TLC ~7000ml, VC ~4500 to 5000 mL, RV ~1200 mL, FRC ~2400 mL, TV ~500mL	2/4 (reasonable approximations)
	Optional: Which of these volumes can be measured in the ED?	FEV1, FVC or TV.	
Stem: Moving on	to Pathology.	·	
Question 5 Asthma Subject: Path LOA: 1	1. What are the pathological features of acute asthma?	1. Increased airway responsiveness; episodic bronchoconstriction; bronchial wall inflammation; increased mucus	3/4 to pass
	2. What is the underlying mechanism of atopic asthma? Prompt: What may trigger an exacerbation?	2. IgE mediated type 1 hypersensitivity; Environmental allergens/triggers (eg dust, pollens, foods, drugs)	Bold and one trigger
	3. What happens in the early-phase reaction in atopic asthma?	 3. Allergen exposure produces IgE a. re-exposure triggers mast cell degranulation/cytokines b. bronchoconstriction c. mucus production d. vasodilation/incr vasc permeability 	Bold & concept

	lady presents to ED with a painful arm follo		
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Stem: She has signif	icant pain and is given morphine		
Question 1	1. What is the mechanism of action of	Act on receptors: mu/deita/kappa	Mu + 1 other mechanism of
Morphine	morphine?	Reduce presynaptic neurotransmission (esp	action to pass
Subject: Pharm		glutamate)	
		Inhibit post-synaptic neurons	
LOA: 1		Central (thalamic action)	
	2. Why do opiates cause respiratory	Inhibition of brainstem respiratory controls	Bold to pass
	depression?	allowing less response to hypercaphoea	
	3. How is morphine metabolised?	Conjugated in liver (morphine-3-glucuronide =	Bold to pass
		most)	
		Small amount (10%) morphine-6-glucuronide =	
		increased analgesic potency	
		Renal excretion	
Stem: Here is her xr	ay		
Question 2	Describe the abnormality	Spiral/oblique fracture mid-shaft L humerus with	
Clinical Building Block: (# humerus)		dis p lacement.	
,	What structure may be injured in this	Radial nerve	
	fracture?		
Stem: Moving on to	normal Anatomy.		
Question 3	1. Identify the features of the humerus	Prox: Head, Anat and Surg neck, Shaft	6 bold to pass
Humerus X-ray	on this x-ray	Gt tuberosity/Lesser Tuberosity	
Subject: Anat	,	Distal: Medial + Lateral epicondyles, Trochlea,	
LOA: 1		Capitulum, Lateral and medial supracondylar	
		ridges	
	2. What are the rotator cuff muscles and	Subscapularis medial rotation of humerus	4 muscles + 1 action to pass
	describe their actions	Supraspinatus initiates abduction and abducts	
		shoulder	
		Infraspinatus and teres minor – lateral rotators of	
		humerus	
		All 4 muscles stabilise shoulder joint	

Question 4	1. How do fractures heal?	1. Haematoma	3/5 to pass
Fracture Healing Subject: Path LOA: 1	Prompt: What are the stages of fracture healing?	 Influx of Inflammatory cells, platelets, fibroblasts, new vessels and osteoprogenitor cells = procallus Fibrocartilagenous callus: mesenchymal cells + new cartilage along fracture line undergoes endochondral ossification = Bony Callus Remodelling 	+ detail
	2. What factors inhibit fracture healing	Inadequate immobilisation/severe displacement/poor reduction/soft tissue Vascular compromise Infection, foreign body Systemic – nutrition, osteoporosis etc.	3 to pass
Stem: Moving on			
Question 5 Calcium metabolism 5ubject: Phys LOA: 1	1. How is plasma calcium regulated?	 1,25-dihydroxycholecalciferol (from Vit D) incr Ca absorption from gut & kidneys. PTH mobilises Ca from bone, incr Ca reabs in kidneys, incr 1,25 DHCC formation in kidneys Calcitonin (from thyroid) inhibits bone resorption, incr Ca excretion in urine. 	2/3 to pass
	2. How is the synthesis of 1,25- dihydroxycholecalciferol (vit D) regulated?	1,25-DHCC formed in kidneys by 1α-hydroxylase . High Ca/high PO4 inh 1,25-DHCC (incr inactive 24,25-DHCC instead). Low Ca incr PTH whic h stimulates 1α-hydroxylase (low PO4 directly stimulates 1α-hydroxylase).	Bold to pass

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Verapamil Subject: Pharm	1. Describe the mechanism of action of verapamil	Block voltage-gated L-type Ca channels (α1 subunit), reduced frequency of opening when depolarised, resulting in decreased transmembrane Ca current,	Bold to pass
		and Ca influx:	
LOA: 1		Vascular smooth muscle relaxation (< Dihydropyridines)	
		Cardiac – decrease AVN conduction, contractility, CO	
	2. What are the toxic effects of verapamil?	CVS: bradycardia, AV block, cardiac arrest, heart failure, hypotension	3 to pass
		Minor: flushing, dizziness, nausea, constipation, peripheral oedema	1 to pass
	3. What antidotes can be used to treat verapamil toxicity?	Calcium iv, high-dose insulin (euglycaemia) therapy	1/2 to pass
Stem: Moving onto	Anatomy. Intravenous access is obtained.		-
Question 2	1. Describe the boundaries of the cubital	Lateral: Brachioradialis (5), (extensors from lat	Bold to pass
Cubital fossa/	fossa	epicondyle)	
forearm photo Subject: Anat		Mediai: Pronator teres (20), (flexors of forearm from CFO)	
LOA: 1		Floor: Brachialis, supinator	
		Superior: Line between 2 epicondyles of humerus Roof: Skin, deep fascia reinforced by bicipital aponeurosis (3)	
	2. Please identify the major veins that can be seen in the photo	Basilic vn (1); cephalic vn (6); median cubital vn (13); median forearm vn (14)	2/4 to pass
	3. Identify the major arteries that can be seen in the photo	Brachial a (4), radial a (21), ulnar a (22)	Bold to pass
	(Bonus: which is the larger terminal branch?)	Ulnar a	

a + Cr - rhabdomyolysis muscle -> myoglobinuria ute reduction of renal function ular injury (usually). Reversible. al blood flow. Systemic – assoc b, TTP, DIC) or hypovolaemia. hies, malignant HT meruli/tubules – myoglobin,
muscle -> myoglobinuria ute reduction of renal function alar injury (usually). Reversible. al blood flow. Systemic – assoc b, TTP, DIC) or hypovolaemia. blood flow. Systemic – assoc b, TTP, DIC) or hypovolaemia. blood flow. Systemic – assoc b, TTP, DIC) or hypovolaemia.
ute reduction of renal function Bold ular injury (usually). Reversible. Bold al blood flow. Systemic – assoc Bold and 1 other category a, TTP, DIC) or hypovolaemia. 1 example for each nies, malignant HT Bold
ute reduction of renal function Bold ular injury (usually). Reversible. Bold al blood flow. Systemic – assoc Bold and 1 other category a, TTP, DIC) or hypovolaemia. 1 example for each nies, malignant HT Bold
ute reduction of renal function Bold ular injury (usually). Reversible. Bold al blood flow. Systemic – assoc Bold and 1 other category a, TTP, DIC) or hypovolaemia. 1 example for each nies, malignant HT Bold
ute reduction of renal function Bold ular injury (usually). Reversible. Bold al blood flow. Systemic – assoc Bold and 1 other category a, TTP, DIC) or hypovolaemia. 1 example for each nies, malignant HT Bold
al ar injury (usually). Reversible. al blood flow. Systemic – assoc b, TTP, DIC) or hypovolaemia. hies, malignant HT
al ar injury (usually). Reversible. al blood flow. Systemic – assoc b, TTP, DIC) or hypovolaemia. hies, malignant HT
al blood flow. Systemic – assoc , TTP, DIC) or hypovolaemia. hies, malignant HT
, TTP, DIC) or hypovolaemia. 1 example for each nies, malignant HT
, TTP, DIC) or hypovolaemia. 1 example for each nies, malignant HT
nies, malignant HT
eruli/tubules – myoglobin,
itis – hypersensitivity reaction
athy
renal") – tumour, clot, stones
e adventitia layer of vessels Bold
and carotid sinus, walls of right Bold and 1 other
d IVC entrances) and pulmonary
nsion, the arterial Bold to pass and understand
s stimulated because they are inhibitory concept
d baroreceptor discharge
ingeal and vagus nerves to the
n overall increase in
e to increase heart rate and
tion and reduce vagal drive .
in a construction of the second secon

 \bigcirc

Candidate Number:

Stem: A 70 year	old man presents to ED as he has become j	aundiced following his return from a trip to India	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Stem: Here are	his blood results.		
Question 1 Clinical	Please interpret these biochemistry results	Bicarb 6 - Metabolic acidosis	Must recognise renal failure and hepatitic LFTs to pass.
Building Block:			(bold to pass)
(hepatic and		eGFR 31 mL/min	
renal failure)		Creatinine 151 μmol/L	
		 Moderate-Severe renal impairment 	
		Bilirubin 32 μmol/L (reduced excretion)	
		Albumin 22 g/L (reduced synthesis)	
		 Mild hepatic impairment 	
	Prompt: what is the pattern of the liver		
	enzyme abnormality?	ALT 1778 U/L	
		AST 5314 U/L	
		ALP 272 U/L	
		GGT 471 U/L	
		-Abnormal liver enzymes c/w hepatitis	
Stem: Moving o	nto Pathology. You suspect Hepatitis A .		
Question 2	What is the causative agent of Hepatitis	Hep A virus – small unenveloped single stranded RNA	Bold to pass
Hepatitis A	A?	picornavirus, icosahedral capsid	
Subject: Path			
	How is hepatitis A transmitted?	Faecal oral spread	Bold to pass
LOA: 2			
	How do the clinical outcomes of	Self-limiting illness	3/6 to pass
	Hepatitis A differ from Hepatitis B?	no carrier state	
		no chronic state	
	(Prompt- How are the long term	no association with hepatocellular Ca	
	outcomes different?)	rarely leads to fulminant disease	
		low fatality rate of 0.1%	
	How is Hepatitis A diagnosed		
	serologically?	Acutely IgM-anti- HAV, followed by appearance / persistence of IgG-anti HAV	Bold to pass

Stem: Moving	onto Pharmacology. His regular medications	s include hydrochlorothiazide	
Question 3	Describe the mechanism of action of	Inhibition of Na/CI transporter in the distal convoluted	Bold to pass
Thiazide	thiazides?	tubule leading to increased NaCl excretion and diuresis	
diuretics			
Subject:		Hypertension	
Pharm	What are the major clinical indications	Heart failure	2 bold to pass
LOA: 2	for thiazide diuretic use?	Nephrolithiasis	
		Nephrogenic Diabetes Insipidus	
		Generalised oedema	
		Nephrotic syndrome	
		cirrhosis	
		Hypokalaemia	
	What are the potential adverse effects	Dehydration/post hypotension/hypovolaemia	2 bold plus 1 other
	of thiazide diuretics?	Hyponatraemia	
		Metabolic alkalosis	
		Hyperuricaemia	
		Hyperlipidaemia	
		Allergic Reactions – x- reactivity with sulphonamides	
		Impaired carbohydrate tolerance – Hyperglycaemia	
		Hypercalcaemia	
		Pancreatitis	
		<u> </u>	

Question 4	Identify the structures on this CT.	Liver, portal vessels, R Kidney (top), aorta	S Bold + 2 others
CT abdomen Subject: Anatomy LOA: 2	(Axial image)	L kidney, spleen, splenic vein (not tortuous), bowel loops, pancreas, IVC, Vertebra, ribs, paravertebral muscles, intercostal and abdominal wall muscles, fat, skin.	
	Describe the course of the ureters	Originate at renal hilum (PUJ) – approx. L2 Run inferiorly lying across psoas Near tips of transverse process of lumbar vertebra (L3 – L4) Cross over pelvic brim Cross anterior to bifurcation of common iliac artery Lie on lateral wall of pelvis Travel medially to bladder Short intramural path at VUJ	4/8 points to pass
	What are the 3 narrowest points of the ureters?	PUJ VUJ Pelvic brim	2 of 3

Question 5	What is the definition of the glomerular	The amount of fluid (plasma filtrate) filtered by the	Concept of filtration and time to
GFR	filtration rate?	glomerulus per unit time	pass.
5ubject: Phys			
LOA: 1	What is the normal GFR?	Usually 125mL/min (180L/day) 10% less in women.	+/- 20 % to pass (either per min or per day)
	What are mesangial cells?	Contractile cells that help to regulate GFR . Located between the basal lamina and the endothelium,	Bold to pass
	(Prompt – Where are mesangial cells	in the glomerulus	
	found? What do mesangial cells do?)	Common between neighbouring capillaries, and in these	
	(Prompt if "in nephron" stated – where in nephron?)	locations the basal membrane forms a sheath shared by both capillaries	
		Also secrete the extracellular matrix, take up immune	
		complexes, and are involved in the progression of glomerular disease.	
	What factors influence GFR?	Age	Any 3 to pass
		Afferent arterial (renal artery) pressure (however	
		autoregulation keeps this stable between about 90-	
		210mmHg)	
		Afferent arteriolar pressure	
		Efferent arteriolar pressure Efferent venous pressure	
		Intra-renal (interstitial) pressure (obstruction, oedema)	
		Oncotic pressure	
		Glomerular filtration fraction	
		Glomerular filtration fraction (mesangial cell function) –	
	What substances act on mesangial cells	influenced by:	BONU5!
	to change GFR?	Increased – ANP, dopamine, PGE2, cAMP	
	(Prompt - What substances act on	Decreased – noradrenaline, vasopressin, All, PGF2,	
	mesangial cells to alter their function?)	endothelins, TXA2, Leukotrienes	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Describe the bony features of the middle	Linea aspera	5/8 to pass
Fe mur - Bone	and lower end of the femur.	Medial supracondylar ridge/line - inferior	
Subject: Anat		continuation of the medial lip of the linea aspera,	
LOA: 1		interrupted to allow passage of the femoral	
		artery, ends in the adductor tubercle	
		Lateral supracondylar ridge/line- descends to the	
		lateral epicondyle.	
		Medial condyle	
		Lateral condyle	
		Intercondylar fossa	
		Adductor tubercle	1
		Attachment of the medial ligament	
	Which muscles attach to the linea	Vastus medialis, vastus lateralis, adductor brevis,	3/6 to pass
	aspera?	adductor longus, adductor magnus, and short	
		head of the biceps femoris	
	Which artery is most likely to be damaged by a fracture of the midshaft of the femur?	Profunda femoris	Bold
	(Prompt : what is the course of the femoral artery through the thigh?)	(use this as supplemental question for better candidates)	

	Pathology. He has a head injury and a CT be		Pold to more on basis
Question 2 Cerebral Oedema and raised ICP Subject: Path LOA: 1	Describe the pathological mechanisms which cause cerebral oedema. (prompt if specific examples used – can you describe the difference between vasogenic and cytotoxic oedema?)	 Vasogenic. BBB disruption, increased vascular permeability. Fluid shift intravascular to intercellular spaces of brain May be generalised or localised (inflammation or neoplasm) Cytotoxic. Increased intracellular fluid due to neuronal, glial, or endothelial injury eg generalised hypoxic/ ischaemic insult or metabolic damage Interstitial or ependymal oedema around (lateral) ventricles due to the high pressure of hydrocephalus 	Bold to pass or basic understanding of two mechanisms
	What are the morphological findings of generalised cerebral oedema. (Prompt: What would be the CT findings?)	Flattened gyri, narrowing of sulci, compression of ventricles and/or basal cisterns, herniation	3 of 4 to pass
	Describe the major herniation locations associated with raised intracranial pressure	Subfalcine herniation- Asymmetric expansion of cerebrum displaces the cingulate gyrus under the falx cerebri Transtentorial or Uncal herniation -Medial aspect of the temporal lobe is compressed against the free margin of the tentorium Tonsillar herniation- Displacement of the cerebellar tonsils through the foramen magnum.	2 of 3 bold plus correct description

Stem: Moving onto	Physiology. He is becoming progressively h	ypertensive and bradycardic.	
Question 3 Cerebral Circulation Subject: Phys LOA: 1	What are the factors that determine cerebral blood flow?	Intracranial pressure Mean arterial pressure Mean venous pressure at brain level Blood viscosity Local constriction/dilation of arterioles	Bold and 1 other to pass
	Describe the autoregulation of cerebral blood flow (Prompt: what happens to cerebral blood flow when blood pressure changes?)	Maintains CBF at constant rate (~750ml/min) across a range of perfusion pressures (MAP 65- 140mmHg)	Bol d to pass
	The patient's bradycardia and hypertension is caused by the head injury. Describe the mechanism responsible.	Cushing reflex – increased ICP compromises blood flow to medulla → sympathetic outflow from vasomotor centre → increases BP in attempt to restore medullary flow → stretch of baroreceptors → vagal stimulation → bradycardia	Bold to pass Vagal stimulation OK instead of stretched baroreceptors

Stem: Moving onto	Pharmacology. He is given Mannitol.		
Question 4 Mannitol Subject: Pharm	Why is mannitol used in the management of head injury?	Mannitol is used to reduce intracranial pressure after head injury.	Bold to pass
LOA: 2	What is the mechanism of action of mannitol?	Mannitol is an osmotic diuretic, it alters Starling forces as it does not cross the intact blood-brain barrier and thus draws water out of cells and reduces intracellular volume (hence reduces intracranial volume and intracranial pressure)	Bold to pass
	What are the other clinical effects?	Reduces intraocular pressure Diuresis / dehydration / hypovolaemia Hypernatraemia Hyperkalaemia	2/4 to pass
	Supplemental Question; What is an appropriate dose of mannitol in this clinical situation?	1-2g/kg as an IV bolus over 1S mins (0.25-2g/kg I V bolus).	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Identify the muscles of the posterior	Superficial posterior compartment:	24 a,b,c triceps surae muscle
Model – Iower leg	compartment of the leg	24a,b Gastrocnemius m.	
Subject: Anat		24c Soleus m.	51 popliteal a.
		24 Plantaris m.	56 posterior tibial a
_OA: 1		Deep posterior compartment:	
		26. Popliteus m.	Must get 6/8 bold
		27 Flexor digitorum longus m.	
		28 Tibialis posterior m	
		29 Flexor hallucis longus m	
	Which muscles form the Achilles tendon	gastrocnemius and soleus, +/- plantaris	Bold to pass
	Where does the Achilles tendon insert?	supero-posterior aspect of the calcaneus	Bold to pass
	Can you identify the nerve supply of these muscles?	tibial n.	
	Can you identify the structures posterior	Anterior to posterior:	2/3 muscles and neurovasc
	to the medial malleolus?	Tibialis posterior	bundle to pass
		Flexor Digitorum Longus	
		Posterior Tibial Artery	
		Tibial Nerve	
		Flexor Hall Longus	
	Supp: What is the blood supply of these	gastrocnemius - sural a. (branch of popliteal a.);	
	mm.?	soleus - posterior tibial a. and peroneal a.)	

Stem: Moving onto	Pathology.		
Question 2 Repair by healing, scar formation and fibrosis Subject: Path LOA: 2	What is the sequence of events for tissue healing by scar formation?	 Blood Clot (stop bleeding, create scaffold) Granulation tissue (angiogenesis, migration and proliferation of fibroblasts) Cell Proliferation and Collagen Deposition (extracellular matrix (ECM) deposition) Scar formation (blanching, increased collagen: type 3 then type 1) Wound contraction (myofibroblasts) Connective tissue remodelling (ECM synthesis and degradation) Recovery of tensile strength 	5/7 to pass
	How do skin wounds recover tensile strength?	Increase in collagen synthesis (type 1) and reduction in collagen degradation (first 2/12) then structural modification of collagen with cross linking & increased fibre size	Bold to pass
	What is the approximate time frame for recovery of tensile strength in skin wounds?	Skin wound has 10% tensile strength at 1/52, and continues to improve over next 3 weeks and plateaus at ~3/12 when tensile strength is 70- 80%. May never recover to 100%	Concept that very weak at time of suture removal and months to attain plateau phase
	(prompt : what is the strength of skin wounds when sutures are removed?)		

Stem: Moving onto	Physiology.		
Question 3 Skeletal Muscle action potential Subject: Phys LOA: 1	Draw a skeletal muscle action potential (Prompt if draw cardiac musc AP)	Skaletol + 30 + 10 + 10 - 10 - 0 - 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Correct shape, axes, resting membrane potentials and durations (+/- 25%).
	What is the sequence of events in the contraction of a skeletal muscle fibre, starting at the motor end-plate?	 1.Discharge of motor neuron 2.Release of transmitter (acetylcholine) at motor endplate 3.Binding of ACh to Nicotinic Ach receptors 4.Increased Na⁺ and K⁺ conductance in end plate membrane 5.Generation of end plate potential 6.Generation of action potential in muscle fibers 7.Inward spread of depolarisation along T tubules 8.Releases of Ca²⁺ from terminal cisterns of sarcoplasmic reticulum and diffusion to thick and thin filaments 9.Binding of Ca²⁺ to troponin C, uncovering myosin-binding sites on actin 10.Formation of cross-linkages between actin and myosin and sliding of thin on thick filaments, producing movement 	5/10 to pass
	What is the sequence of events in the relaxation of a skeletal muscle fibre?	 1.Ca²⁺ pumped back into sarcoplasmic reticulum 2.Release of Ca²⁺ from troponin 3.Cessation of interaction between actin and myosin 	Boid to pass

Question 4	What is the mechanism of action of	5-HT ₃ receptor antagonist; Effect brought about	Bold, plus 1 receptor location
Ondansetron	Ondansetron?	at peripheral (Gut) > central receptors	
Subject: Pharm		(chemoreceptor trigger zone and vomiting centre)	
	Prompt- Where are these receptors		
LOA: 1	found?		
	What are the doses and routes of administration of Ondansetron ?	4-8 mg SL , PO, IV , SC, IM	Bold, plus 3/5
	What are the adverse effects of Ondansetron?	Constipation, headache, dizziness, QT prolongation	1/4 to pass
	In which disease state would you need to modify the dosing?	Hepatic failure Not with renal failure or age	Bold
	What are some other classes of	Phenothiazines	3/8 to pass
	antiemetic drugs?	Antihistamines	
		Cannabinoids	
	(ask for drug class if just name a drug)	Benzodiazepines	
		Butyrophenones (Droperidol)	
		Benzamides (eg Metoclopramide)	
		Neurokinin receptor antagonists	
		Corticosteroids	

,

Stem: A 40 yo man pre	sents with extensive burns to the lo	ower half of his body. A CVC is inserted. We are starting with Anatomy	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	What are the boundaries of the	SCM, midline, mandible	All 3 to pass
Photo – Anterior	anterior triangle of the neck?		
Triangle of Neck		22 Internal jugular vein	Need to
(McMinn's p39)	SCM has been removed in this		identify
	photo. Where is the internal	UV – continuation of sigmoid sinus	
Subject: Anat	jugular vein? Describe its	Contained in <u>carotid sheath</u> . Lies lateral and ventral to artery. Goes <u>deep to</u>	Concept.
LOA: 1	course.	<u>SCM</u> and 2 heads of SCM – sternal and clavicular heads	4/5 Bold to
		Joins subclavian vein posterior to <u>sternal end of</u> clavicle. Forms <u>brachiocephalic vein.</u>	pass.
			2 to pass
	What major structures are at	external carotid artery (11) common carotid artery (8)	
	risk during insertion of an IJ line.	vagus (63), other nerves, lung, trachea, scm, thyroid, thoracic duct	
Stem: We are now movi	- +.	<u> </u>	
Question 2	How are thermal burns classified?	According to depth of injury:	Bold required
Thermal Injury		Superficial – confined to epidermis	
(Robbins pp 421-422)		 Partial thickness – extends to dermis Full thickness – involves subcutaneous tissue 	
Subject: Path	What are the potential complications	Early:	2 early and 2
LOA: 1	of thermal burns?	 Hypovolaemic shock (especially with >20% BSA) 	late
		Compartment syndrome (circumferential LL burn)	
		 Associated injuries (eg inhalational burn, CO poisoning) 	
		Airway compromise	
		Hypermetabolic state Late:	
		Infection / sepsis (Pseudomonas)	
		ARDS	
		Multi organ failure	
		Skin grafting, scarring / cosmetic	
		Psychological	
	How do you determine the extent of	 TBSA calculation notoriously inaccurate. Does not include superficial burns Wallace "rule of nines"/Lund & Browder diagram 	Mention 1 method

Stem: We are now movi	ng on to Physiology		
Question 3 Venous Pressure and flow (Ganong 24th ed pp 582-584) Subject: Phys LOA: 1	 Describe the mechanisms of venous return to the heart 	 a) Thoracic pump: inspiration resulting in negative pressure in the thorax and positive pressure in the abdomen. Blood flow towards the heart because of venous valves b) Effect of heart beat: during systole, AV valves are pulled downward → increase the capacity of the atria c) Muscle pump: contraction of muscles around the veins in the limbs during activity d) Differential resistance: resistance of the large veins near the heart is less than peripheral veins 	Thoracic pump plus one other
	 What factors might effect the CVP of this patient? What is the value of mean CVP in normal individuals 	 a) Decrease CVP: Fluid loss; blood loss b) Increase CVP: Excessive fluid replacement; other pre-existing conditions eg CCF; positive pressure ventilation; increased thoracic pressures 4.6-5.8 mmHg or 6-8 cm H2O 	1 example from each bold category Reasonable value
Stem: We are now movi] ing to Pharmacology. He is resuscit	ated with Hartmann's solution	
Question 4 Compound Sodium Lactate (MIMs & product information) Constitution,	(a) How does Hartmann's solution differ from normal saline?	Addition of Sodium Lactate, Potassium Chloride , Calcium Chloride (+pH adjustment) Na 131, K 5, Cl 112, Ca 2, Lactate/Bicarb 28 mmol Compare Normal Saline Na 150 Cl 150)	Bold
Indications, Adverse effects. Comparison to other crystalloids and colloids	(b) What are the potential advantages of Hartmann's solution in resuscitation?	Closer to physiologic – potassium, calcium Less Hyperchloraemia Effective bicarbonate – some (slow) good effect on acidosis (proof of superiority lacking)	8old
Subject: Pharm LOA: 1	(c) What are the potential complications of IV fluid therapy?	overload/under resuscitation, hypothermia, extravasation, acidosis, electrolyte abnormalities, osmo changes, air embolism, infection, cerebral oedema, haemodilution	Bonus

ACEM PRIMARY VIVA A

Thursday Afternoon Session 2 Candidate Number:

TOPIC	ly lady presents with acute abdominal pain. QUESTIONS		<u> </u>
		KNOWLEDGE (essential in bold)	NOTES
Question 1 Photo of Abdominał wall (fig	1 What structures in this photograph are potential sources of acute abdominal pain?	Aorta (aneurysm), Coeliac axis and SMA (mesenteric ischaemic), kidneys and ureters (stones/infarcts), Splenic artery (aneurysm/dissection), Lymph nodes (adenitis/pressure), psoas (abscess or bleed)	Bold
258A) Subject: Anat LOA: 2	2 Identify the (other) vascular structures in this photograph (<i>if not already</i>)	Landmarks and levels: IVC, left renal vein, right renal vein. Aorta, Coeliac axis (T12), superior mesenteric artery (L1).	4/6 bold
	3 Describe the arterial supply and venous drainage of the gut	Foregut (+hepatobiliary & spleen) - Coeliac axis: common hepatic (->cystic, hepatic, right gastric, gastro-duodenal), splenic, left gastric (not shown); Midgut (duodenum to transverse colon)-SMA: inferior pancreaticoduodenal, jejunal/ileal branches, ileocolic, right and middle colic. Hindgut-IMA (small calibre + collaterals, therefore rarely blocked). Venous drainage – superior mesenteric vein (joins splenic vein to form portal vein), inferior mesenteric vein	Bold
Stem: We are	now moving on to Pathology. She has ischa	emic bowel.	
Question 2 Thrombosis Subject: Path	1. What factors predispose to thrombus formation in a vessel?	Virchows triad. Endothelial injury; Alteration in blood flow (stasis or turbulence); Hypercoaguability of blood	3/3 bold
LOA: 1	2. How are hypercoaguable states categorised? What are some examples of each type?	 Primary (Genetic) Mutations - Factor V Leiden, Prothrombin Increased levels - factors VIII, IX, XI, fibrinogen Deficiencies - AT3, Protein C, S Fibrinolysis defects, homozygous homocystinuria Secondary (Acquired) Prolonged bed rest, immobilisation, MI, AF, Tissue injury (surgery, #, burn), cancer, prosthetic valves,, DIC, HITS, Anti phospholipid antibody syndrome Cardiomyopathy, nephrotic syndrome, hyperoestrogenic states (pregnancy, post partum), OCP, sickle cell anemia, smoking 	2 categories plus Primary - 2 examples Secondary - 3 examples
	3. What are the possible outcomes for a vessel thrombus?	 Note: often multifactorial Propagation (e.g. resulting occlusion); Embolization; Dissolution; Organisation and recanalization (e.g. to variable degree) 	2/4 categories

Stem: We are	now moving to physiology. Arterial blood g	gases show a metabolic acidosis	
Question 3 Renal role in the handling	1. Describe how the kidney responds to metabolic acidosis	Renal tubule cells secrete H⁺ into tubular fluid in exchange for Na ⁺ HCO ₃ is actively reabsorbed into the peritubular capillary (for each H ⁺ secreted, $1Na^+$ and 1 HCO_{3^-} are added into blood).	Bold
of H+ ions Subject: Phys LOA: 1	2. What substances act as urinary buffers for the excretion of H ⁺	NH ₃ forms NH ₄ ⁺ ; HCO ₃ -forms CO ₂ and H ₂ O; HPO ₄ ²⁻ forms H ₂ PO ₄	2 of 3
	3. How else can the body compensate for a metabolic acidosis? Prompt: What other major system is involved in acidosis compensation?	The respiratory system responds by increasing ventilation which results in a decrease in PCO2 which causes increase in pH (this is a rapid response)	Bold to pass

	now moving to Pharmacology.		
ACE Subject: Pharm	What is the mechanism of action of captopril?	Angiotensin converting enzyme (kininase II) inhibitor: inhibits hydrolysis of A1 to A2. Hence, inhibits A2 effects (potent vasoconstrictor and increases Aldosterone secretion – salt and H2O retention) and decreases PVR, BP. Also, inhibits bradykinin inactivation to cause vasodilatation and decreased PVR, BP.	Bold to pass
LOA: 2	What are the adverse effects of captopril?	 Hypotension, 1st dose esp. if hypovolaemic, diuretics, NaCl restriction, GI loss ARF esp. with bilateral RAS HyperK+ esp. if renal insuff, DM Cough, angioedema (bradykinin, substance P), wheeze Fetal abnormalities (hypotension, anuria, renal failure – 2nd/3rd trim, increased teratogenesis – 1st trim) Altered taste, allergic skin rash, drug fever (10%) 	3 of Bold to pass
	What drugs interact with captopril?	K+ supplements, K+ sparing diuretics – increase hyperK+ NSAIDs – impair BP reduction (block bradykinin) Other antihypertensives; haemaccel	Bold to pass

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Chest X-ray Subject: Anat LOA: 2	 Outline the structures that make up the cardiomediastinal borders on this normal X-Ray 	Right: R Brachiocephalic v, SVC, R Pulmonary Artery, R Atrium, IVC Left: Aorta, L Pulmonary Trunk/Artery, L Atrium, L Ventricle	6 Bold to pass
	2. Which parts of the lungs lie adjacent to the cardiomediastinum?	Right upper mediastinum: R superior lobe Right heart border: R middle lobe Left upper mediastinum: L superior lobe Left heart border: Lingula segment of L superior lobe	RML plus one other
	 In this patient, what injuries may be seen on a CXR? (Prompt: the patient has sustained blunt trauma) 	Chest wall: # ribs, clavicle, sternum Lung: pneumothorax, haemothorax, contusion, Cardiovascular: aorta, other vessels (widen mediastinum)	1 example from each bold category to pass
Stem: We are n	noving to Pathology. She has multiple wour	nds oozing blood due to DIC	±
Question 2 DIC Subject: Path LOA: 2	 On a full blood count and coagulation profile, what would you expect to find? 	↓Hb (MAHA – microangiopathic haemolytic anaemia), 个WCC, platelets↓, Fibrinogen↓, PT/INR个, a/PTT个 and fibrin degradation products个	Bold to pass
	2. What are the pathological consequences of DIC?	DIC – major trauma releases tissue thromboplastins. Both sides of clotting cascade are activated. 2 major consequences – deposition of fibrin within microcirculation leading to ischaemia/micro thrombosis of vulnerable organs; and a consumptive coagulopathy - platelets and clotting factors leading to a bleeding diathesis.	Bold to pass 3/3
	3. What are the causes of DIC?	Obstetric – FDIU, amniotic fluid embolism, preeclampsia, Sepsis Malignancy – acute promyelocytic leukaemia, adenoca of lung, pancreas, stomach and colon Trauma- multi/burns/environmental/snakebite	Must get 3 categories

Question 3	1. Name the endogenous	Adrenal Medulla: Adrenaline, Noradrenaline, Dopamine.	Bold
Ci r culatory	catecholamines?	Intrinsic Cardiac Adrenergic Cells: Adrenaline. Sympathetic Nervous	
Catecholamines	Where are they produced?	System Cells: Dopamine	
Subject: Phys	(prompt to match catechol with		
LOA: 1	source)		
		Metabolic- Glycogenolysis, increased metabolic rate, mobilisation of free	One metabolic
	2. What are the physiological effects of	fatty acids, increased lactic acid	and bold
	adrenaline and noradrenaline?	Cardiovascular- vasoconstriction and dilation, increase heart rate and	cardiovascular
		strength	2
		al:Constriction of blood vessels, smooth muscles (esp norad)	
		α 2:Mixed smooth muscle effects (esp adren)	Extra info only
		β1:Cardiac ionotropy and chronotropy, irritability (both)	
		β 2:Dilation blood vessels liver & muscle, other smooth muscle relaxation	2
		(adrenaline) β3: Lipolysis, detrusor relaxation (esp adren)	
			1
Stem: We are no	w moving to pharmacology. You decide to	use Bupivicaine as the local anaesthetic to insert a chest tube	
Question 4	1. What is the mechanism of action	1. Blocks voltage-gated sodium channels in nerve. Threshold for	Bold
Bupivicaine	of bupivacaine?	excitation increases, conduction slows, AP rise declines, AP	
Subject: Pharm		generation abolished. If Na current blocked over length of nerve,	
		propagation is ceased.	
LOA: 1	2. How long will a bupivacaine	2. 3-6 hours	Approximate or
	block last?		long duration
	3. What are the potential adverse	3. CNS toxicity (sedation/light	
	effects from bupivacaine?	headedness/visual&auditory/tongue&mouth numbness/metallic	
		taste/nystagmus/restlessness/ muscle twitches/seizure/resp	Bold
		depression),	
		Cardiac toxicity (arrhythmias/cardiovascular collapse/cardiac	
		arrest), Local toxicity (trauma/neurotoxicity)	
		arrest), Local toxicity (trauma/neurotoxicity) Allergy	
		Allergy	Extra
	4. How can the risk of these effects	Allergy 4. Ask re Hx of allergy, Use safe max dose (<2mg/kg), withdraw pre	Extra
	4. How can the risk of these effects be minimised in the ED?	 Allergy 4. Ask re Hx of allergy, Use safe max dose (<2mg/kg), withdraw pre injection, avoid vessels-anatomical consideration (above rib below) 	Extra
		Allergy 4. Ask re Hx of allergy, Use safe max dose (<2mg/kg), withdraw pre	Extra

ACEM PRIMARY VIVA B Thursday Morning Session 1 Candidate Number:

Stem: A 40 yo man presents to	ED with renal colic	<u> </u>	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
The first questions is in regard to			
Question 1 Urolithiasis (Robbins pp 962- 963)	1.What are the main types of renal calculi? Prompt: What are the common constituents of renal calculi?	 1.Calcium oxalate and phosphate (70%); 2. Struvite or triple (magnesium ammonium phosphate) (15-20%); 3. Uric acid (5-10%); 4. Cystine (1-2%) 	1.Calcium + 1 other to pass
Subject: Path LOA: 1	2.What conditions in urine favour stone formation?	 Increased concentration of stone constituents; changes in urinary pH; decreased urine volume; bacteria 	2. 2 to pass
	3. What are the complications of ureteric calculi?	3. pain, haematuria, infection, obstructive renal impairment	3. 1 bold and 1 other.
Stem: Moving now to your phys	iology question. The patient is noted to have a	low eGFR.	
Question 2 GFR including hydrostatic and	1.What is normal Glomerular Filtration Rate (GFR)	125ml/min in normal adult 180L/24h/10% lower in women	Approx value
osmotic pressure.(Ganong 24th ed pp 678-680) Subject: Phys LOA: 1	2. What factors control GFR?	Hydrostatic Press/Osmotic press gradient, Size & permeability of capillary bed (mesangial cell contraction/relaxation & loss of renal tissue) K in Starling Forces=GF coefficient=mesangial cell (ncrease –ANP Dopamine PGE2 cAMP	2/4 bold Role of mesangial cells Vaso active Agents - 2 Clinical examples - 2
	Prompt: What agents, mediators & clinical factors affect GFR?	Decrease – Endothelins, AGII, vasopressin, norepinephrine, PAF,PGF2, leukotrienes Ca/D4, histamine TxA2 Clinical: Systemic BP/Parenchymal odema/Ureteric obstruction/after-efferent arteriolar constriction/plasma proteins	
Stem: Moving now to your phar	macology question. You decide to give this pa	tient morphine for analgesia.	Later to a second destination
Question 3 Morphine (Katzung 12th edition pp543-556) – pharmacokinetics; pharmacodynamics – in particular, receptors bound to;	1. What is its mechanism of action?	1.Brain and Spinal cord receptors: mu, delta, kappa. (Subtypes: 2 mu and delta, 3 kappa). Binding to receptor (particularly mu) >> reduction of neurotransmitter release from presynaptic nerve terminals (especially glutamate), and inhibit postsynaptic neurons (by opening K channels).Central thalamic action and activation of descending inhibitory pain neurons.	Must name mu and 1 other types of receptors, and the 2 bold actions.
adverse reactions	2. How is morphine metabolised and excreted?	2. Mostly liver conjugated to morphine-3-glucuronide which has neuroexcitatory properties. 10% is metabolised to morphine-6-	Liver metabolism & metabolites are renally
Subject: Pharm LOA: 1	3. What are the possible acute adverse reactions with morphine? Prompt: why are we more cautious in using morphine in renal failure patients?	glucuronide with 4-6x increased analgesic potency. Excreted renally. 3. Sedation/ resp depression, nausea and vomiting, hypotension if predisposed, histamine release, dysphona, biliary colic, pruritis, allergy. In renal failure it can cause seizures, or prolonged analgesia.	excreted Bold and 2 more.
Stem: Moving now to your ana	tomy question. Where would you look for a sto	ne causing this man's pain on this Xray?	
Question 4 AXR- abdomen (outlining	1.Course of ureter	1. Hilum(~L2/Tips of Trans Ps of lumbar vert/pelvic brim at Sl joint or there abouts(bifurc of Common iliac art.)/Lat wall of pelvis	4 Bold
ureters) Subject: Anat LOA: 2	 2. Where is a stone likely to lodge? 3. Where would a staghorn calculus form? If have time name other structures on XR 	toward ischial spine then medially to base of bladder 2. Narrowings of ureter: PUJ; Pelvic brim; VUJ 3. Hilum: Pelvis and calyces	2 of 3

	oy presents to ED with measles.		
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
	in regard to pathology		
Question 1 Measles Subject: Path LOA: 2	 What organism is responsible for measles infections and how is it transmitted? What type of immune response occurs in measles? 	1.Virus, RNA, Paramyxo >>respiratory transmission 2.T cell mediated controls infection and causes rash Antibody mediated protects against reinfection	Bold to pass Antibody mediated
	3.What are the clinical features of measles?4. What are the complications of measles?	3. fever, rash, conjunctivitis, cough/coryza, Koplik spots, lymph nodes. 4. pneumonia, secondary bacterial infection, delayed – encephalitis, SSPE	3 bold to pass 2 as minimum.
	o your physiology question: He is noted to be hypoxic		
Question 2 Hypoxia Subject: Phys LOA: 1	1.Describe the different types of tissue hypoxia. Prompt: Hypoxia is deficiency of O2 at the tissue level	 Hypoxaemia (hypoxic hypoxia) – arterial PO2 reduced Anaemic hypoxia – arterial PO2 normal but Hb reduced Ischaemic/ stagnant hypoxia – blood flow & O2 delivery decreased Histotoxic hypoxia → because of toxin cells cannot use it 	3 to pass
	2.Describe the respiratory mechanisms leading to hypoxaemia and give examples?	Reduced ventilation (asthma), VQ mismatch (PE). Shunt (CHD), diffusion 2 mechanic limitation (APO/LVF/pulmonary fibrosis) 2 mechanic	
	3. Describe the clinical effects of acute hypoxia	Disorientation, confusion, headache, LOC, Tachycardia +/- , hypertension, hypotension, AMI, arrest, diaphoresis, tachypnoea	2 to pass
	rmacology: The child's mother has epilepsy and takes va		
Question 3 Valproate	1. What are the possible pharmacodynamic mechanisms of Na Valproate?	GABA increased presynaptically by reduced GABA breakdown to succinate (ABAT/ GAT1), (> C⊢ inh post synaptic GABR channel)/ possible increased production (GAD)	Bold
Subject: Pharm LOA: 1	Prompt: what ion channels/ neurotransmitters are most likely involved?	Direct inh actions on post synaptic Na Channel particularly high freq gates and Ca+ (membrane stabilisation-reduces voltage gated outflow), Blocked NMDA receptor activation effects?	
	2.What are the adverse effects?	Nausea/vomiting/ GI (v common); Severe hepatotoxicity - liver failure (> young/ other hep tox drugs/ liver damaged); Marked fetal abnormality rates (8-9%)/ reduced IQ + other possible developmental effects; Thrombocytopaenia/ bruising; Pancreatitis; alopecia, neuro (asthenia, tremor, nystagmus etc); Hypersensitivity reactions	Bold and 1 other
	your anatomy question. The mother has a seizure and f		
Question 4	1. What air filled structures are visible on this CT?	1. Maxillary, mastoid, ethmoidal	bold and 1 other
Facial Bone CT Subject: Anat LOA: 2	2. What other structures are visible?3. What structure passes through the infra-orbital foramen?	2.Bones: Frontal, zygoma, ethmoid, nasal septum, maxilla, nasal concha (middle and inferior), crista galli, Other: orbit, ocular muscles, frontal lobe (coronal slice), temporal lobe and parieto-occipital lobe,	2 bones and 3 others.
	4. What is its sensory distribution?	 Infra-orbital nerve superior lip, lateral nose, cheek, inferior eyelid, upper teeth and gingiva 	Bold

Stem: An obese 50 year	old woman presents to ED with an anaphylactic reac	tion to penicillin.	
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
The first questions is in re	egard to pathology:		
Question 1 Type 1 hypersensitivity	1.What type of hypersensitivity reaction is involved?	Type 1	
reaction Subject: Path LOA: 1	2.What are the sequence of events involved in type I hypersensitivity reactions following re exposure to an allergen?	Mast cells armed with pre formed IgE antibodies > on re exposure to specific antigen > release of mediators from mast cells: 1. preformed mediators – e.g histamine/ proteases/ chemotactic factors, 2. lipid mediators e.g leukotrienes C4 and D4/ PG D2/ PAF and 3. Cytokines e.g TNF and chemokines > Immediate and late phase reactions	Bold
	3.What changes occur at the tissue level?	1.Vasodilatation 2.increased vascular permeability 3. smooth muscle spasm/ bronchospasm 4. cellular infiltration 5. epithelial damage	3 of 5 to pass
Stem: Moving now to vo	ur physiology question: She is hypoxic with oxygen s		
Question 2 Oxygen / Haemoglobin dissociation curve Subject: Phys	 Please draw and label the oxygen dissociation curve. 	100	Draw correct shape – have points of 90% (58- 60) saturation.
LOA: 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	2. What factors can cause the curve to shift to the right (reduced affinity of Hb for O2)?	 Increased temp, PCO2, 2,3 DPG Drop in pH (increased H+) 	At least 3
	3. What are the physiological advantages of this curved shape?	(UPPER) If pO2 alveolar gas falls, loading of O2 fittle affected. Also, as RBC takes up O2 along pulmonary capillary, diffusion process hastened as large partial pressure difference maintained when most of O2 has been transferred. (LOWER)Steep lower part means peripheral tissues can withdraw large amounts of O2 for only small drop in capillary pO2	Concept of loading and unloading of oxygen being facilitated

Stem: Moving now to ye	our pharmacology question. Your planned treatment in	ncludes IV hydrocortisone.	
Question 3 Corticosteroids Subject: Pharm LOA: 1	Describe the mechanism of action of corticosteroids at a cellular level?	 Most of known effects via widely distributed glucocorticoid receptors Present in blood in bound form on Corticosteroid Binding Globulin (CBG) Enters cell as free molecule Intracellular receptor bound to stabilizing proteins (most important heat shock protein 90, Hsp90) Complex binds molecule of cortisol then actively transported into nucleus where binds to Glucocorticoid Receptor Elements (GRE) on the gene Interacts with DNA and nuclear proteins regulating transcription. Resulting mRNA exported to cytoplasm for protein production for final hormone response 	Bold to pass
	How can corticosteroids be classified? Prompt: How do they differ in their action?	 length of action (hydrocortisone short to medium-acting, dexamethasone or betamethasone long-acting) anti-inflammatory activity (potency: hydrocortisone 1, prednisolone 5, dexamethasone 30) mineralocorticoid activity ie., salt retaining (fludrocortisones 250 times that of hydrocortisone) topical vs non topical 	bold
	What are the side effects of corticosteroid use? Prompt: what about long term effects?	 Short term: (<2 weeks): insomnia, behaviour changes, acute peptic ulcer, acute pancreatitis, hyperglycaemia Long term: Cushing's Syndrome (moon facies, fat redistribution, fine hair growth, acne) secondary to hormonal actions. (Rate of development function of dose and genetic background) hyperglycaemia, diabetes myopathy osteoporosis, aseptic necrosis psychiatric (hypomania, acute psychosis, depression) Na,fluid retention, K+ loss adrenal suppression / addisonian crisis poor wound healing 	Bold and 4 others
Stem: Moving now to yo	our anatomy question. You are inserting an IV in her c		
Question 4	1.please identify and name the superficial veins	1. medial cubital vein (13), cephalic vein(6), medial forearm	bold to pass
Cubital Fossa	2. please identify the arteries and the nerves	Vein(14)	
Subject: Anat	3.please identify and name the muscles of the forearm	2.median nerve (15)(, radial artery in CF or wrist (21), ulnar artery (22), brachial artery(4)	at one site to pass
		3. pronator teres (20), brachioradialis (5), biceps tendon(2) and aponeurosis (3), FCU(9),FCR (8),PL (18),FDS (10)	Name 4

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Glucose homeostasis (Ganong 24th ed pp 431- 432, 433-434, 441-442, 444-445) Subject: Phys LOA: 1	1.1 What factors determine glucose homeostasis?	 1.1 Glucose absorption from intestine Glucose uptake in the periphery - muscle, brain, fat, red cells and liver Reabsorption in kidney Gluconeogenesis in liver (Insulin and Glucagon) 	1.1 Name at least 3 mechanisms
	1.2 What happens to glucose homeostasis in the absence of insulin?	 1.2 Hyperglycaemia due to a) decreased peripheral uptake of glucose into muscle and fat (direct effect) b) reduced glucose uptake by liver (indirect effect) c) increased glucose output by the liver and lack of glycogen synthesis (GIT, renal, brain and red cells glucose uptake unaffected) 	1.2 2 out of 3 mechanisms
	1.3 What effect does glucagon have on blood glucose?	1.3 Increase BSL due to increased glycogenolysis and increased gluconeogenesis in liver	1.3 know that glucagon increases liver glucose output
Stem: We now move onto p	harmacology.	······································	
Question 2 Insulins (Katzung 12th ed pp 747-753) Subject: Pharm LOA: 1	What pharmacological methods are used to optimise blood sugar control when administering insulin? Prompt: what are the different types of insulin?	 Titration of dose to BSL Pharmacological manipulation of human insulin molecule: rapid-acting (aa reversal/substitution reducing aggregation properties), intermediate acting (insulin/protamine complexes), long acting (aa substitutions, molecular attachments) Mixing of insulin preparations Continuous subcutaneous insulin infusion devices 	Bold to pass

	What are the complications of	Hypoglycaemia	Bold + \$ to pass
	insulin administration?	Hypoglycaemic unawareness	
		Insulin allergy (usually due to non-insulin	
		contaminants)	
		Immune insulin resistance	
	L	Lipodystrophy at injection sites	
Stem: We now move onto an			
Question 3	1. identify the structures lying	1.Medial to lateral:	1. 4/5 bold to pass
Model – fo ot (N S 9),	deep to the extensor	Tibialis anterior, EHL, Dorsalis Pedis, Deep fibular	
include description of	retinaculum	nerve, EDL, fibularis tertius, EDB	
cutaneous nerve supply of			
foot.	2. Describe the cutaneous nerve	2. DORSUM:	2. 3/4 dorsal & 2/3 plantar to
Subject: Anat	supply of the foot	Deep Fibular nerve (1st web space),	pass
LOA: 1	{	Superficial fibular nerve (becomes dorsal digital	
		nerves) – majority of dorsum of foot	
		Dorsal lateral cutaneous nerve of foot (terminal	
		branch of sural nerve) – lateral foot	
		Saphenous nerve (medial foot below medial	
		malleolus)	
		PLANTAR:	
		Medial, lateral plantar nerves (terminal branches	
		of tibial nerve)	
		Calcaneal branches (of tibia & sural nerves)	
	3. Describe the anatomy of the	3. Direct continuation of anterior tibial artery	3. 3 to pass
	dorsalis pedis artery (dorsal	Lies between EHL & EDL & gives off	
	artery of the foot)	Medial tarsal artery, Lateral tarsal artery (lateral	
	Extra question if time allows.	tarsal art. joins the arcuate artery)	1
		At the 1 st interosseous space divides into the	
		1 st dorsal metatarsal artery & deep plantar artery	ł
		(the deep pl. artery joins the lateral plantar artery	
		to form the deep plantar arch)	<u> </u>
Stem: We now move onto p	athology.		
Question 4	a) What are the principal	Vascular-	Bold + 3 of 7 clinical
Complications of diabetes	complications of Diabetes	- macro atherosclerosis, CAD, PVD, RAS, HT and	complications.
mellitus (Robbins pp1138-	mellitus?	CVA	
1143)	(Prompt: what happens in the	- microangopathic thickened BM, increased	
	pancreas?)	permeability of capillaries to plasma proteins -	
Subject: Path		nephropathy, retinopathy, neuropathy	

LOA: 2		Pancreatic changes - los		
		and size), amyloid infiltra		
		Renal - sclerosis, BM thic	ckening,	
		glomerulosclerosis		Question b (to pass) - age
		Occular- prolif and non p		group and severity of illness +
		exudates neovascularisa	tion, detachment,	at least 2 symptoms or
		glaucoma		syndromes associated with
		Neuropathy		each type.
		Type 1	Type 2	Age + 2 clinical + 1 pathology
	b) Outline some of the	Onset: childhood, <18	Onset: usually adult	to pass
	differences in patients with	N or under weight	Obese	1
	Type 1 and type 2 diabetes.	Dec in insulin	Inc blood insulin	11
		Circulating islet	No islet auto-	7
		autoantibodies	antibodies	
		polyuria, polydipsia,	May have HONC	
		polyphagia +/-		
		ketoacidosis		
		Genetic linkage	No genetic linkage	
		Dysfunction in T cell	Insulin resistance	
		resulting in islet Ab		
		<u>Type 1 :-</u>		
		- typically young < 18 yrs	, usually abrupt onset	
		due to exhaustion of b co	ell reserve - often with a	
		precipitating illness incre	easing demands on	
		pancreas eg. infection-		
		<u>Type 2 :-</u>		
		- often > 40 yrs, obese		
	1	- often asymptomatic an	d incidental finding on	
		routine followup or bloo	-	
		- may have DKA or HONO	with dehydrating	1
		precipitant		
		- often a longer cause illr	ess due to residual	
		pancreas capacity		

Candidate Number:

Stem: A 60 year old man with a history of atrial fibrillation on warfarin presents to ED following a motor bike accident. His blood pressure on arrival is 80/40 TOPIC QUESTIONS KNOWLEDGE (essential in bold) NOTES **Ouestion 1** What are baroreceptors and where are Stretch receptors Bold to pass Baroreceptors they located? Subject: Phys Carotid, aortic, cardiopulmonary. In the adventitia of vessels. Carotid and aortic plus one LOA: 1 The carotid sinus and aortic arch receptors other to pass monitor the arterial circulation. Receptors are in the wall of the right and left atria, at the entrance of SVC and IVC and in the pulmonary veins as well as in the pulmonary circulation (collectively the cardiopulmonary receptors). What is their mechanism of action? Very sensitive to changes in pulse pressure. Exert an inhibitory input via the tractus solitarius Need mention of inhibitory nature of pathway and nerves in the medulla. Stimulated by distension of the structures in affected (vagus, sympathetics) which they are located, therefore discharge at an increased rate when the pressure in these structures rises. Increased baroreceptor discharge inhibits the tonic discharge of sympathetic nerves and excites the vagal innervation of the heart. Result is vasodilatation, venodilation and a fall in BP, bradycardia and decreased cardiac output. What is their action in this setting of Decreased blood volume and decreased venous Bold to pass acute blood loss? return results in reduced stimulation of arterial baroreceptors and increased sympathetic output. The result is reflex tachycardia and vasoconstriction. Stem: The patient's INR result is 5.5. 2/3 bold to pass, must include What methods are available to reverse Cease warfarin **Ouestion 2** warfarin induced anti-coagulation? Vit K – oral or IV 1-10mg vitamin K. Vitamin K +/- FFP or prothrombinex How does vitamin K reverse warfarin Subject: Pharm

LOA: 2	effect? How long does it take for vitamin K to	Pharmacodynamic interaction with warfarin to reduce INR ie reverses the effect of warfarin Re-establishes normal activity of the clotting factors. Vit K dependant clotting factors: II, VII, IX,X	Bold to pass
	work?	6 - 24 Hours	>6 hrs
Stem: He sustained	an open ankle injury.		
Question 3 Bones- ankle / foot Subject: Anat LOA: 1	1. Identify the bones of the foot and ankle	1. Lat malleolus (fibula), Medial malleolus (tibia), talus (dome/head/body),calcaneus, cuboid, navicular, med/middle/lat cuneiforms, MTs (base shaft/head/neck), tarsal bones	1.Bold to pass
	 Identify factors that provide stability to the ankle joint (Prompt: Describe the ligament of the ankle in more detail.) 	 2. Bony- Ankle mortice around talus (lat/ med malleolus and distal tibial articular surface) held together by ant + posterior tibio-fibular ligament Ligamentous- MCL (Deltoid)- 4 parts ant + post tibio-talar, tibio-calcaneal, tibio- navicular) / LCL- 3 parts (ATFL, PTFL, calcaneo-fibular ligt) / distal tibio-fibular syndesmosis/ IOM Muscular- not seen 	2/3 bold to pass, some details of one of the ligament.
Stem: Several mont	hs after discharge, he develops osteomyelit	is. Woring binto pathology	
Question 4 Osteomyelitis Subject: Path LOA: 1	1.Describe pathogenesis of osteomyelitis. (Prompt what organisms cause osteomyelitis?)	 *Local bone injury and organism entry, blood borne organisms, neighbouring source entry. *Staph Aureus > 80% of pyogenic ones Others E coli, Kl Pneum, Ps Aerug from IVDU and GU, haemophilus influenza, Gp B Streptococcus. 50% no orgs found. 	1.Bold + 1 to pass
	2.What changes occur to the bone?3.What are the pathological sequelae of	*Acute inflammation, necrosis, abscess Sclerosis, involucrum and sequestrum, lytic focus and surrounding necrosis- periosteal elevation	2.Bold to pass
	osteomyelitis?	* Chronic up to 25%, resolve, deformity and bone destruction, severe sepsis, pathological fracture, endocarditis, SCC, sarcoma.	3.Bold

	QUESTIONS	s with a severe headache and a BP of 160/100. We w KNOWLEDGE (essential in bold)	NOTES
Question 1	1.1 What factors affect cerebral blood	1.1	1.1
Autoregulation of	flow?	 Intracranial pressure 	Bold +1
cerebral		Mean arterial pressure	
circulation		Mean venous pressure	į
Subject: Phys		• Local factors: pH, pCO2, cause constriction	
LOA: 1		and dilatation of cerebral arterioles	
		Blood viscosity	
		1.2 The process by which CBF is maintained at a	Able to draw a plateau region
	1.2 Describe autoregulation of cerebral	constant level despite variation in perfusion	with a range for MAP of 50 –
	blood flow. You can draw a diagram if	pressure.	150 mm Hg.
	you wish.	Average CBF is 54 ml/100g/min between MAP 65- 140 mmHg	CHAPTER 33 Consumer Dennigh Special Regions 607
			100
	1.3 What is the Monroe-Kellie doctrine?	1.3 Due to the fact that brain tissue and spinal	50
	(optional if run out of time)	fluid are essentially incompressible, the volume	70 140 Arterity pressure (mm Hg)
	, , , , , , , , , , , , , , , , , , , ,	of blood, spinal fluid and brain tissue must be relatively constant. So when ICP rises, the	RE33-9 Autoregulation of cerebral blood flow (CBF) a stearty state conditions the blue free blow the alteration will be remembrane complete during autoregulation
		cerebral vessels are compressed resulting in	and the second states of the second
		reduced cerebral blood flow (CBF)	
			Need to pass 2/3 part to pass.
Stem: We are movi	ng onto pharmacology. Her treatment inclu	des Magnesium	
Question 2	2.1 What are the indications of its use in	2.1 It is indicated in pre-eclampsia and eclampsia.	Bold to pass
Magnesium	pregnancy?	for the prevention and treatment of life	
Subject: Pharm		threatening seizures.	
	2.2 What are the other uses of	2.2 It has an anti-convulsant effect, possible	2/3 bold to pass
.OA: 1	magnesium in Emergency Medicine?	antiarrhythmic effect, bronchodilator effect.	
		(influence Na+/K+ -ATPase, Na channels, certain	
		K and Ca channels).	
	2.3 What are the toxic effect of	2.3 Hypermagnesaemia include nausea &	3 to pass
	magnesium?	vomiting, flushing, hypotension, muscle	1
		weakness, muscle paralysis, blur or double vision,	
		CN5 depression or loss of reflexes, respiratory	
		depression, renal failure, cardiac arrhythmia.	

Stem: We are movi		2.1. Desire Construct I wood allo to such	
Question 3 Sagittal model of head looking at the CNS Subject: Anat LOA: 2	 3.1 Identify the intracranial structures visible on this model. 3.2 Describe the anatomy of the Circle of Willis. You can draw a picture if you wish. 	3.1 Brain:- Cerebrum/ medulla/pons/ cerebellum/spinal cord/corpus callosum/dura/ventricle Frontal/parietal/occipital/maxilla/ethmoid <u>Spine</u> -Atlas (C1)-ant and post arches/Axis- dens(C2)	Bold 5/6 to pass 4/S to pass the circle Middle Carotid Posterior Carotral Posterior Carotral Posterior Communicating Posterior Carotral Communicating
Stem: We are mov	ing onto pathology.		
Question 4 Pre-eclampsia Subject: Path LOA: 2	4.1 Describe the pathogenesis of pre - eclampsia.	4.1 Endothelial dysfunction, vasoconstriction leads to hypertension, increase vascular permeability causing proteinuria & oedema.	Bold + 1 to pass
LUA. Z	4.2 What is the clinical course of pre eclampsia?	4.2 > 34 weeks typically has HT, oedema, proteinuria Headache and visual disturbance Eclampsia is progression to seizures and coma	2/3 bold to pass (prompt: what happens in untreated pre-eclampsia?)
	4.3 What morphological changes occur in the placenta?	4.3 Infarcts, haematomas, villous ischaemia, syncytial knots, fibrinoid necrosis	1 to pass

(b) Identify the boundaries of the

carpal tunnel on this model.

(b) Tubercle scaphoid and trapezoid laterally, and

pisiform and hook hamate medially

(b) 4/4 bony landmarks to pass

luestion 1	(a) What is drug clearance?	KNOWLEDGE (essential in bold)	NOTES
	I (a) writer is a rug clearance:	(a) Clearance:	(a) Reasonable definition to pas
		 Measure of the ability of the body to eliminate 	
efinition, factors affecting,		a drug	
xamples		 Rate of elimination in relation to drug 	
		concentration	
ubject: Pharmacology		 CL = rate of elimination / concentration 	
OA: 1			
	(b) What factors affect drug	Concentration - Dose & Bioavailability	(b) One for each element
	clearance?	Elimination - specific organ function / blood	
		flow & protein binding	
		 Major sites of elimination are kidneys and liver 	
		 therefore factors that affect these organs' 	
		function and blood flow will have most effect	
	(c) What is the difference between	(c) Capacity-limited is saturable (zero order)	(c) Bold to pass
	capacity-limited and flow-	Examples: aspirin, phenytoin, ethanol.	(-) [
	dependent drug elimination?	Flow-dependent = non-saturable (1 st order) (organ	
		blood flow, protein binding) Examples: Alprenolol /	
		amitriptyline / Imipramine / isoniazid / labetalol /	
		lignocaine / Morphine / propoxyphene / propranonol /	
		verapamil	
item: Moving onto ANATOMY			<u>_</u>
Question 2	(a) Identify the bones in this hand	Prox row: Pisiform, triquetrum, lunate,	(a) All carpal bones to pass
Bone – hand / carpal bones	and wrist.	scaphoid	1
		 Distal row: Hamate, capitate, trapezoid, 	
ubject: Anatomy		trapezium	
.OA: 1		 Metacarpals, and phalanges, prox/middle/distal 	

	··		
	(c) This patient develops median nerve paresis as a consequence of her fracture. What deficits will she develop? (Prompt: what does the median nerve supply in the hand?)	 Sensory supply: radial 3 ½ digits and adjacent palm, excluding central palm which is by cutaneous palmar branch passing over flexor retinaculum Motor supply: thenar muscles except add pollicis and deep head fpb; and lateral lumbricals for digits 2 and 3 	(c) Correctly identify sensory supply and one group of muscles
Stem: During the reduction	she becomes persistently hypoxic. This top	pic is PATHOLOGY.	
Question 3	(a) Describe the pathogenesis of	Aspiration of gastric contents	(a) 4 bold to pass
Pneumonia including aspiration pneumonia	aspiration pneumonia. (Prompt: predisposing features,	 Type of patient (\scalar conscious/debilitated/abnormal gag/repeated vomiting) 	
Subject: Pathology LOA: 1	organisms, outcomes)	 Chemical and bacterial >1 organism (aerobes>anaerobes) Necrotizing 	
		Death / abscess	
	(b) How are community-acquired pneumonias different?	 Bacterial or vira! Variable pneumonia dependent on – etiol., host response etc 	(b) 5 bold to pass
		 Predispose – extremes age, chr disease etc Agents – strep pneum, haem. Influenza, etc Clinical course modified by ABs 	
		 Low hosp, low death Complications – empyema, endo/pericarditis, 	

Question 4	(a) How is carbon dioxide	(a) In plasma:	(a) Bold to pass
CO2 carriage and dissociation	transported from the tissues to the	Dissolved	
curve	lungs?	Carbamino compounds with plasma proteins	
Whineth Dhusiology		Hydration – H+ buffered – HCO3- in plasma	
Subject: Physiology _OA: 1		In RBC:	
		 Dissolved Formation of carbamino-Hb 	
		 Hydration – H+ buffered – 70% of HCO3- 	
		enters plasma	
		Each 49ml CO2/dL arterial blood – 5% dissolved, 5% in	
		carbamino compounds, 90% hydrated as HCO3	
		700 -	1
	(b) Draw and explain the carbon		(b) Concept to pass
	dioxide dissociation curve	5 600 - Ho reduced	
		B 600 Hb reduced Hb axygenated	
		Monus Monus	
		8 8	
		$300 \frac{1}{20} \frac{1}{30} \frac{1}{3$	
		P _{CO2} (mmHg)	
		(c) 70% of HCO3- formed in red cells enters the plasma	
	(c) What is meant by the term 'chloride shift'?	in exchange for chloride – exchange is the chloride shift	(c) Reasonable definition to pas

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Potency & efficacy with reference to	(a) What is drug potency?	(a) Dose or concentration to achieve 50% maximal effect (EC ₅₀ or ED ₅₀)	(a) Bold to pass
morphine / fentany((b) Draw and explain dose-response curves comparing morphine with fentanyl.	(b) Must graph dose or log dose (X axis) versus response (Y axis).	(b) Display differences and explain on graph
Subject: Pharm			
LOA: 1	(c) What are the pharmacokinetics of fentanyl?	(c) Highly lipid soluble, Half-life 5 mins, duration 1-1.5 h, low bioavailability, hepatic metabolism	(c) 3 of 5 to pass
Stem: Moving onto A	ΝΑΤΟΜΥ	- <u> </u>	I
Question 2	(a) Identify the features on this model of a	(a) Bony: Humerus / Humeral head	(a) Bold to pass
Shoulder Model	shoulder.	Scapula - coracoid process / acromion / spine / body	
		Clavicle	
Subject: Anatomy		Joints: glenohumeral and acromioclavicular	
LOA: 1		Ligaments:	
		Coracoclavicular – conoid part and trapezoid part – most important for stability AC joint	
		Acromioclavicular -top of clavicle to acromion	
		Glenohumeral ligaments – reinforce anterior part of	
		capsule from glenoid labrum to humerus	
		Tendons: Long head of biceps tendon	
	(b) What anatomical structures confer stability to the shoulder joint?	 Joint capsule with fusion of the tendons of scapular muscles 	(b) 3/5 to pass
		Ligamentous: glenohumeral and	
		coracohumeral ligaments	
	1	Coracoacromial arch superiorly created by	
		coracoacromial ligament	
		Deepening of glenoid cavity by glenoid	
		labrum	
		 Tendons of long head of biceps and triceps 	1

	(c) What structures can be damaged by shoulder dislocation? (Prompt for ax nerve)	(c) Joint capsule and glenoid labrum damage results in recurrent dislocation Axillary nerve lies below joint capsule – palsy Associated fracture of greater tubercle	(c) Bold to pass
Stem: Your intern cor	nsults you on a 60 yo lady he suspects has acute	cholecystitis. This topic is PATHOLOGY .	
Question 3 Cholecystitis Subject: Path LOA; 1	(a) Describe the pathogenesis of acute calculous cholecystitis.	 (a) Chemical irritation of obstructed GB Mucosal phospholipases hydrolyse luminal lecithins to toxic lysolecithins Protective glycoprotein mucus layer disrupted Allows Bile salts to have detergent action on exposed mucosal epithelium PGs contribute to inflammation GB dysmotility develops Distension and increased intraluminal pressure decreases mucosal blood flow 	(a) Bold + 2/6
	(b) What are the complications of cholecystitis?	 (b) Bacterial infection - cholangitis / sepsis Perforation and localised abscess Rupture and peritonitis Biliary fistula Porcelain gallbladder 	(b) Bold + 2/4
Stem: Moving onto P	HYSIOLOGY	•	
Question 4 Liver metabolic functions especially bilirubin metabolism. Subject: Phys LOA: 1	(a) List the principal functions of the liver	 (a) Bile formation (500ml/day) Synthesis - protein, coag factors, albumin Inactivation / detoxification - drugs, toxins, active circulating substances Nutrient vitamin absorption, metabolism / control (e.g. glucostat), AAs, lipids, fat sol vitamins Immunity (esp. gut organisms) - Kupffer / macrophages in sinusoid endothelium 	(a) 3/5 bold with an example to pass

(b) Describe the metabolism of bilirubin.	 (b) Formed by breakdown of haeme, Hb Bound to albumin In liver – actively transported (OATP) as dissociates – binds to cytoplasmic proteins Conjugated by gluc-transferase in ER with glucuronic acid to H2O sol bil-digluc Bil di gluc active transport (MDRP2) against gdt to bile canaliculi – to gut (<5% bil/bdg reflux to blood) Intestinal mucosa relatively impermeable Gut bacteria act / convert most to urobilinogens Some bile pigments / urobilinogens/unconj bil reabsorbed in portal circulation – most resecreted = enterohepatic circulation Small amounts urobil in blood excreted in urine – urobilinogen and faeces – stercobi 	(b) Bold to pass
---	--	------------------

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Bioavailability with particular reference	(a) What is bioavailability?	(a) Fraction of unchanged drug reaching the systemic circulation following administration by any route	(a) Bold to pass
to NSAIDs	(b) What factors affect bioavailability?	(b) 3 factors: Extent of absorption	(b) Bold with reasonable explanation of each
Subject: Pharm		 Too hydrophilic or too lipophilic – decr. absorption 	
LOA: 1		 Reverse transporter associated with p- glycoprotein – pumps drug back to gut lumen – decr. absorption 	
		 Gut wall metabolism – decr. absorption First pass metabolism 	
		 Metabolism by liver before it reaches systemic circulation Small additional effect if drug has biliary 	
		excretion Rate of absorption Determined by site of administration and drug formulation	
	(c) What is the bioavailability of ibuprofen?	(c) High - Weak organic acid – well absorbed rapidly. Minimal first pass metabolism	(c) Bold to pass
Stem: Moving onto A			L
Question 2	(a) Identify the features on this model of the knee joint.	Bones: patella, femur, fibula, tibia, and Features: med/lat fem condyles, med/lat tibial	(a) All bones + 5 features + 4/4 ligaments
Subject: Anatomy LOA: 1		condyles, tibial tuberosity, head/neck fibula, lat /med epicondyle femur, menisci, patellar tendon Ligaments: medial/lat collateral, ant / post cruciates	

	(b) Describe the cruciate ligaments and their	Attachment points:	(b) 2/4 attachment points
	actions.	 Ant cruciate - weaker, ant intercondylar area tibia, extends sup, post and laterally to attach to post part of med side of lat condyle femur Post cruciate - arises from post intercondylar area of tib and passes sup and anteriorly on med side of ant cruciate to attach to ant part of lat surface of med condyle of femur) Actions: Ant cruciate prevents post movement of femur on tibia (or ant movement of tib on femur) and limits hyperextension of knee Post cruciate limits ant movement of femur on tibia (or post movement of tib on femur) and prevent hyperflexion of knee 	1/2 actions
	(c) What features confer stability on the knee joint?	(c) Muscles/tendons, and ligaments connecting femur to tibia – no bony contribution. 2/3 of quadriceps (esp. inf. fibres of vast med/lat) Collateral ligaments and cruciate ligaments	(c) Bold to pass
	. k		F
Stem: The next pa	atient is a 20 yo woman who is dehydrated seconda	ary to poor oral intake from glandular fever. This topic is P /	ATHOLOGY.

	b) What are the clinical features of glandular fever?	 (b) Classically – Fever, sore throat, lymphadenitis splenomegaly Atypical presentation common – fatigue, lymphadenopathy, hepatitis, rubella-like rash 	(b) 4 clinical features to pass
	(c) What are the outcomes of glandular fever?	4-6 weeks most resolve - some fatigue longer Hepatic dysfunction - j, abn. LFTs, appetite Splenic rupture Other systems - nervous, renal, lungs, heart. Transformation - lymphomas	(c) 3 outcomes to pass
item: Moving onto	PHYSIOLOGY		
	(a) What is the renal response to	(a) Renin release converts a gin to AT1	(a) Need details re secretion i.e.
•	(a) What is the renal response to dehydration?	(a) Renin release, converts a-gin to AT1 ACE converts AT1 to AT2	
Renal response to	(a) What is the renal response to dehydration?	ACE converts AT1 to AT2	(a) Need details re secretion i.e. reduced pressure at JG cells of renin and actions of A-2
Question 4 Renal response to dehydration Subject: Phys	1 · ·		reduced pressure at JG cells of

insertion.

Vasoconstriction

(b) Promotes water resorption in CD via aquaporins

(b) Bold to pass

(b) What is the role of vasopressin in

dehydration?

	Stem: An 80 year old woman pres	ents to ED following a fall secondary to an episode of	f melaena.
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1. How are the causes of anaemia classified?	1. Blood loss: acute, chronic	Bold main headings & 1 example of each to
Anaemia (pp 639-665)		2. Increased RC destruction	pass.
Cubicate Dath	Prompt if use RC morphology: How are the causes classified by mechanism?	Inherited genetic: H Spherocytosis, G6PD, Thal, Sickle cell	
Subject: Path	Prompt for example if not volunteered.	Acq genetic: Parox noct hemo. Ab mediated: transfusion, drugs, Rh disease. Mech trauma: HUS, DIC, TTP, cardiac	
LOA: 1		valves, runners.	
		Infx: malaria; Toxic: envenom, clostridia, Pb.	
		3. Decreased RC production	
		Inherited genetic: Fanconi's, thalassemia. Nutritional:	
		B12/folate, iron. Erythropoietin deficit: renal failure,	
		chronic dis. Immune: aplastic anaemia.	
	2. Describe the pathogenesis of iron deficiency	Causes: Chronic blood loss, poor diet, impaired absorption,	Bold to pass.
	anaemia.	incr reqs	
		Iron stores used up first – ferritin haemosiderin.	
		Once reserves depleted serum iron & transferrin decr.	
		Erythroid activity increases, no iron in marrow	
		macrophages. RCs become hypochromic & microcytic.	
	3. (Please give examples of anaemias that are	Hereditary spherocytosis: northern Europe	1 correct with example.
	more common in specific ethnic groups.) Ask if	G6PD: 10% African American, Africa, Middle East, Med	
	there is time.	Sickle cell: African descent, up to 30%	
		Thalassemia trait: Africa, Asia, Med, India	
Stom: Initial treatment i	included commencement of a Pantoprazole infusion	Pernicious: Scandinavian, Caucasian.	
Question 2	1. Describe the MOA of PPIs	Irreversibly inactivates H ⁺ K ⁺ ATPase, blocking the proton	Bold to pass.
Proton Pump		pump-inhibiting >90% acid secretion, for up to 24 hrs (time	
Inhibitors (pp 1085-		taken for synthesis new enzymes).	
1089)			
	2. Why is an IV infusion preferred to a single	Only inactivates actively secreting acid pumps (<10% in	Bold to pass.
Subject: Pharm	bolus dose?	fasting patients). Hence single dose only decreases acid secretion for a few hours.	
LOA: 2			
	3. Regarding oral formulations of proton pump	Taken as inactive pro-drugs, Begin as acid resistant enteric	2 concepts.
	inhibitors, please describe strategies used to	coated to prevent gastric elimination. Take on empty	
	increase their bioavailability and activity.	stomach as food decreases bioavailability. Weak bases so	
		pass into acidified parietal cells, where concentrated 1000x,	
		ecomes activated and binds to H ⁺ K ⁺ ATPase. Take 1 hour	
		prior to meal so peak dose drug occurs when most pumps	
		are active.	

Stem: Her BP is low.			
Question 3 Renal response to hypovolaemia (pp 701- 706)	1. Explain how hypotension activates the renin- angiotensin system.	1. Hypotension leads to reduced perfusion pressure of the afferent glomerular arteriole , stimulating release of renin by the juxtaglomerular cells.	1. Bold to pass.
Subject: Phys LOA: 1	2. How does the renin-angiotensin system contribute to the restoration of the blood volume?	 Renin converts angiotensionogen to angiotensin I. Angiotensin converting enzyme converts AG1 to angiotensin II. Ang II acts on the adrenal cortex's zona glomerulosa cells to release aldosterone. Aldosterone acts on the renal distal tubules to retain Na and water, thus increases intravascular volume. Ang II also 	2. 4/5 bold to pass.
	3. What other factors increase renin secretion?	 a potent arteriolar constrictor and contributes to a rise in blood pressure. 3. Renin (protease) release is stimulated by increases in: catecholamines, sympathetic activity through renal nerves, prostaglandins, low Na states: cardiac failure, liver failure 	3. 1/3 bold to pass.
Stem: Following resuscit	tation, she complains of a painful hip and X-rays show	and Na depletion.	
Question 4	a) Identify this bone and the significant bony	Femur, appropriate side/orientation	Bold structures to pass.
Femur (bone)	features at the proximal end (Fig 5.7 p 517).	Head, fovea, neck, greater & lesser trochanters, intertrochanteric crest & line, quadrate tubercle, pectineal	
Subject: Anat		line, gluteal tuberosity.	
LOA: 2	b) What is the blood supply of the head and neck of the femur?	Med and lat circumflex femoral aa Usu branches of deep art of thigh (profunda femoris) Branch to form retinacular aa (from med >lat), feed under post unattached capsule (med) or through iliofemoral lig (lat).	Bold to pass Need to show understanding of dual supply, and relative contributions (circumflex aa > art to head of femur).
		Artery to head of femur – br of obturator (less important).	
	c) You plan to do a femoral nerve block. What structures does the femoral nerve supply? (Supplementary question if time remaining)	Anterior thigh muscles (quadriceps) Pectineus, Sartorius, iliacus Articular branches to hip and knee joints Cutaneous branches to anteromedial thigh Terminal cutaneous branch is saphenous nerve to anteromedial knee, leg, foot.	2/3 bold to pass.

	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1. What are the major bony compartments	Anterior cranial fossa – frontal bone (ant), ethmoid (mid)	Needs skull model as prop
Bone – Base of skull	within the Base of Skull and what are the major	and lesser wing of Sphenoid (post).	Must identify all 3 fossae plus
ubject: Anat	bones forming them?	Middle cranial fossa – Sphenoid plus Squamous Temporal	identify major bone in each.
.OA: 2		laterally, contains Sella Turcica.	
		Posterior cranial fossa – Occipital Bone plus dorsum sella of	
		Sphenoid anteriorly.	
	2. Identify the various foramina in the Base of	ACF: Cribriform Plate – Olfactory N,	Must identify 5 foramina.
	Skull.	MCF: Optic Canal – Optic N, Ophthal A	
		Superior Orbital Fissure – CN III, IV, VI	
		Foramen Lacerum – Int Carotid A plus associated	
		sympathetic	
		Internal acoustic meatus – CN VII, VIII plus labyrinthine a	
		Foramen Rotundum – V2	
		Foramen Ovale – V3, accessory meningeal A	
	3. What structures pass through the foramen	Foramen Spinosum – middle meningeal A	
	magnum?	Groove for Petrosal N and Petrosal Br Middle Meningeal A	
		PCF: Foramen Magnum – Medulla/Brainstem, plus vert a, XI	Bold to pass
		Jugular Foramen – CN IX, X, XI, sup bulb of IJV	
		Hypoglossal Canal – CN XII	
		Condylar Canal – emissary veins (sigmoid sinus)	
		Mastoid Foramen – Mastoid emissary vein.	
	40 beats per minute and he takes metoprolol.		
Question 2	1. Describe the pharmacokinetics of metoprolol	Oral or IV, Vd – large, T ½ 3 – 4 hrs, Metabolised in liver	Oral & IV & 1 st pass
ubject: Pharm	Prompt what is its bioavailability and why?	Bioavailability 50% due to 1 st pass effect.	Or
/letoprolol / Beta			3/5
olockers (Ch 10)	2. How does metoprolol differ from propranolol	Beta 1 – full agonist	
OA: 1	in its action at beta receptors?	Beta 2 - 50 – 100 fold less potent	B1 Selective
	3. How do BB control hypertension?	Negative inotropic and chronotropic effects	Negative inotropic & chronotropic
		Slow a-v node conduction	effect
		Antagonises release of renin/not fully understood.	

Question 3	1. What is the stroke volume in a normal adult at	Stroke vol – 70-90ml	Bold to pass
Pressure Volume Loop (pp 540-550)	rest?		· · · · · · · · · · · · · · · · · · ·
Subject: Phys	2. Please draw and label the pressure volume	A. Start of systole: mitral (and Tric) valves close	Correct graph needed to pass. Need
LOA: 1	loop of the left ventricle.	Isovolumetric contraction til LVP > Aortic P (80mmHg) Aortic (and Pulmonary) valves open.	to demonstrate reasonable understanding of the loop.
	Prompt: Describe the changes in pressure and	B. Ventricular ejection (rapid at first) peak pressure	
	volume that occur during systole and diastole.	120mmHg End systole: momentum of ejected blood overcome by	
		aortic pressure.	
		C Aortic valve closes. ESV – 50ml	
		C-D. Isovolumetric relaxation	
	1-17	LVP drops below atrial pressure – mitral valve opens – ventricle begins to fill (rapidly at first) EDV – 130ml	
	Traduction (AD-2) researching on the Contract of the A		
I			
Stem: The patient has a	ortic stenosis.		
Question 4	1. What are the predisposing factors for calcific	Age: normal valve 70-90 yrs, bicuspid 50-70	Bold and one other
Calcific Aortic Stenosis	aortic stenosis?	Bicuspid valve or other congenital abnormality	
(pp 561-563) Subject: Path		Wear and tear, chronic injury Hyperlipidemia, hypertension, inflammation	
LOA: 2		Other factors associated with atherosclerosis	
	2. What are the clinical consequences of aortic	Gradual obstruction of LV outflow leads to concentric LVH –	3 out of 4 concents in hold to pass
	stenosis?	pressure overload	
		Ischaemia/angina	
		Can get systolic and diastolic dysfunction	
		CHF and syncope herald decompensation.	
	3. What are the potential complications of a congenital bicuspid aortic valve?	Calcification, stenosis, regurgitation, infective endocarditis,	Bold and 2 other
		aortic dilatation, dissection	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1.On the model, identify the structures of the	Cartilages: thyroid, cricoid, epiglottis, arytenoids,	Must name 4 of 5 bold and 2 others
Airway (model)	larynx and upper airway	corniculate, cuneiform	
(Somso Model)		Ligaments: cricothyroid membrane, thyrohyoid, vocal cords	
	(somewhat dependent on model – for this	Muscles: cricothyroid muscle thyrohyoid,, cricoarytenoid	
Subject: Anat	session we take half mandible off and the muscles at the back)	Spaces & Folds: vallecula , aryepiglottic folds	
LOA: 1			
	2. Describe the nerve supply to the intrinsic	All muscles supplied by branches of X	Must name rec laryngeal and X as its
	laryngeal muscles (muscles of vocalisation)	All except cricothyroid supplied by recurrent laryngeal n,	source
		cricothyroid supplied by external laryngeal n.	
	3.What is the results of an injury to the recurrent	Hoarse voice, and if bilateral, stridor due to inability to	Supplemental
	laryngeal nerve	abduct cords as posterior cricoarytenoids are only	
		abductors.	
Stem: A CXR shows pne	l umonia. We will now move onto Pathology		
Question 2	1. What organisms cause community acquired	1. Bacterial – Step pneumonia, H influenza, Moxarella	Bacterial – bold plus 2 others
Community Acquired	pneumonia?	catarrhalis, S.aureus, Kelbsiella, and pseudomonas	
Pneumonia (pp 710-	Prompts What organisms cause atypical	2. Atypical orgs Mycoplasma, chlamydiae spp, coxielle	Atypical – 1 to pass
716)	pneumonia, and what viruses may cause atypical	burnetti (Q fever), legionella pneum	
Subject: Path	pneumonia?	3. Viral – RSV, parainf, influenza A and B, adenovirus, SARs, H1N1	Viral – 1 to pass
LOA: 1			
	2. What are some potential complications of	Abscess formation, Empyema, Bacteraemia/bacterial	3 complications to pass
	pneumonia?	dissemination (endocarditis, pericarditis, meningitis, kidney,	
	Prompt – pathological sequelae	brain abscess), sepsis, respiratory failure	
	3. How do the clinical features of atypical	Moderate sputum, no physical findings of consolidation,	2 features to pass
	pneumonias differ from classic (typical	only mod increase in WBC	
	pneumonias)?	Cough not prominent, typical sx are fever, headache, myalgia.	
		Lower mortality compared with classic pneumonia.	
		Lower mortanty compared with classic pheumonia.	

Stem: Blood gases show	<i>i</i> an acidosis. We will now move onto Physiology		
Question 3 H+ handling in metabolic & respiratory acidosis (pp 711-712) Subject: Phys LOA: 1	1.Describe the renal response to acidosis Prompt – Describe the role of buffers in the kidney	Aims to return serum pH to normal by increasing H+ excretion. Kidney retains HCO3 by actively secreting H+ Renal tubule cells excrete carbonic anhydrase converting CO2 to H+ and HCO3, then tubule cells secrete H+ in exchange for Na+ Amount of secreted H+ limited by urinary pH >4.5 (limiting pH) Buffering in tubular fluid pH with HCO2, HPO4 and NH3 allows greater H+ secretion.	Must know that H+ actively secreted into tubular fluid in exchange for Na. Must know about buffering and name 2 buffers.
Stem: We will now mov	e onto Pharmacology. He is a diabetic on metformin		
Question 4 Metformin (p 757) Subject: Pharm	1. Describe the pharmacokinetics of metformin	Well absorbed, not protein bound, not metabolised, elimination half-life 1.5 to 3 hours Excreted by kidney as unchanged compound.	Bold and one other to pass.
LOA: 1	2. Outline some common side effects of metformin	GI most common (20%) – limits compliance with this drug. HAGMA (lactic acidosis) esp in patients with coexistent renal disease, EtOH, chronic cardiopulmonary disease.	Bold to pass.
	3. Contrast the mechanism of action of metformin (biguanide) and glipizide (sulfonylurea).	Glipizide – Increases insulin release from pancreas (patients more prone to hypoglycaemia with glipizide compared with metformin) Decreases serum glucagon levels	Bold to pass.
		Metformin Mechanism unclear but: May reduce hepatic gluconeogenesis. Not dependent on functioning pancreatic B cells – so doesn't influence insulin release from pancreas May directly simulate glycolysis in tissues with increased glucose removal from blood Decreases glucose absorption in the gut	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1. Please describe the arterial supply of	The Ulnar and Radial Arteries supply all of the	Bold + 1 branch of each arch to pass
	the hand.	blood supply to the hand.	
Hand (photo)	(without photo)	Radial Artery- Deep Palmar Arch. Lies deep to	
		long flexor tendons and sits across the	
Subject: Anat	Prompt:	metacarpals just distal to their bases.	
	What happens to these arteries in the	Branches: (of Deep Palmar arch)	
LOA: 1	palm? How are they arranged? How do	3x Palmar metacarpal arteries	
	they terminate?	Princeps pollicis artery	
		Radialis indicis artery	
		Ulnar Artery- Two terminal branches	
		Deep Palmar Branch (24) anastomoses with the	
		Radial Artery via the Deep Palmar arch.	
		Superficial Palmar Arch is main terminal branch.	
		• 3 Common Palmar Digital Arteries arise.	
		• Each divides into a pair of Proper Palmar	
		digital arteries that run along adjacent	
		sides of 2-4 th digits.	
	2. Can you identify the Ulnar artery on the picture?	Ulnar Artery (23),	Bold to pass
	3. Describe the sensory innervation to	Median nerve (16) & Radial to dorsum to DIP	Bold to pass
	the index and middle fingers?		Thumb, Index, Middle and half of the ring
		1st (7) and 2nd (22) Lumbricals.	finger (palmar aspect). Dorsal tips (nail
		Muscles of the Thenar eminence: Opponens	beds) of the thumb, 2 nd and 3rd fingers.
		pollicis, Abductor pollicis brevis (2) and Flexor	
	4. Can you identify on the picture	pollicis brevis (13).	
	muscles in the hand and forearm that	Forearm: Flexor carpi radialis (8), Palmaris	4 of 8 bold to pass
	are innervated by the median nerve?	longus, Flexor digitorum superficialis(12), Radial	FPL and PQ supplied by the Anterior
		half Flexor digitorum profundus (2 nd and 3 rd	Interosseous nerve (a branch of the
		digits) (11). Flexor pollicis longus (14), Pronator quadratus	Median)

Stem: We will now me	ove on to Pathology.		
Question 2 Embolism (pp 125- 127)	1. What is an embolus?	A detached intravascular solid/liquid/gas mass that is carried by the blood stream from its site of origin to a distant site .	Bold to pass
Subject: Path	2. Name the different types of embolus?	 Thromboembolus Venous: pulmonary Arterial: systemic Fat embolus: from bone marrow Gas embolus: eg air/nitrogen Amniotic fluid embolus Tumour fragment embolus Foreign body embolus eg catheter 	Bold + 2 to pass
	3. What is systemic thromboembolism?	Definition: Emboli in arterial circulation	Bold to pass
	4. From where do they arise and where do they lodge?	<u>Sources:</u> 80% from intracardiac mural thrombi (2/3 L vent wall infarcts, ¼ L atrial dilation/AF) Other sources: aortic aneurysms, ulcerated atherosclerotic plaques, valvular vegetation, paradoxical emboli, unknown	Bold + 2/4 sources and 2/4 sites to pass
	Bonus Question Describe the process of infarction from arterial occlusion. Prompt: What are the features that influence the development of an infarct?	Lodgement Sites: Lower limbs (75%), brain(10%), Other: intestine, kidneys, spleen, upper limbs Area of ischaemic necrosis: dominant histologic characteristic is ischaemic necrosis - White infarcts occur in solid organs with end- arterial circulation - Acute inflammation happens within hours; reparative response follows - Factors influencing infarct development: nature of vascular supply (end artery vs presence of collateral blood supply), rate of occlusion, vulnerability to hypoxia, oxygen content of blood, calibre of occluded vessel,	

Question 3	1. How does heparin act?	Heparin binds endogenous antithrombin and enhances its activity. Antithrombin inhibits	Bold to pass
Heparin (pp 604-607)		factors IIa, IXa and Xa by complexing with them and inducing a conformational change.	
Subject: Pharm			
LOA: 1	2. How may heparin be administered?	IV vs SC. Continuously (following bolus) vs intermittent. Therapeutic vs prophylactically	Bold to pass
	3. What are the potential adverse effects?	Bleeding, allergy, alopecia, osteoporosis, HIT , mineralocorticoid deficiency	Bold + 1 to pass
	4. What are the advantages of low molecular weight heparins compared to	Have equal efficacy, increased SC bioavailability, require less frequent dosing, and less monitoring.	Demonstrates understanding
	unfractionated heparin?	Shorter chain heparin with less effect on thrombin (IIa).	

Question 4	1. Describe the normal sequence of	Normal sequence of depolarisation:	Bold to pass.
	electrical excitation of the cardiac	SA Node	
Subject: Phys	conduction system and cardiac	Atria	
•	muscle?	AV Node	
LOA: 1		Bundle of His	
		Major bundles (Right and left)	
		Purkinje fibres	
		Ventricular muscle	
	2. What are the common mechanisms	Abnormal pacemakers	4 to pass
	that cause abnormalities of cardiac	Re-entry circuits	
	conduction?	Conduction deficits	
		Prolonged repolarisation	
		Accessory pathways	
		Electrolyte disturbance	
	3. Please draw and explain the action	Pre-potential is initially due to a decrease in K+	To pass:
	potential of a cardiac pacemaker cell	efflux, then completed by Ca2+ influx through CaT	Correct shape of graph
		channels.	Know ion fluxes:
	Prompt:	The action potential is due to influx of Ca2+ via	Pre-potential decrease K+
	Which electrolytes are responsible for	CaL channels.	efflux/Ca2+ influx
	each phase of the action potential?	Repolarisation is due to K+ efflux	Action potential Influx Ca2+
			Repolarisation K+ efflux
		-40-	
		Prepotential decay	
		Time	

ACEM PRIMARY VIVA B Thursday Afternoon Session 2 Candidate Number:

AGREED MARK:

Stem: 85 year old man presents to your ED in urinary retention, the day after a prostate biopsy. On PR examination, his prostate is extremely tender and you suspect prostatitis. We will start with Pathology.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Acute inflammation –	1. What are the three major	1. Dilation of small vessels leading to increase blood flow.	Bold to pass
questions to focus on	components of acute inflammation?	2. Increased permeability of the microvasculature	Neutrophils predominate in the
acute inflammation not prostatitis specifically (as		enabling plasma protein and leucocytes to leave the circulation.	early inflammatory (6 – 24 hours) infiltrate and are later
this is an LOA 3 topic) (pp		3. Emigration of leucocytes from the	replaced by monocytes and
48-56)		microcirculation to the site of injury.	macrophages (24 – 48 hours).
Subject: Path	2. How are leucocytes delivered to the site of injury?	This is a multistep process mediated and controlled by adhesion molecules and chemokines.	Bold to pass
LOA: 1	PROMPT: What are the three processes that leucocytes undergo to move from the blood to the site of injury?	1) Margination: Occurs when leucocytes adopt peripheral position along the epithelium. Rolling (transient adherence mediated by selectins), activation and firm attachment (mediated by integrins) to the endothelium.	
		 2) Transmigration (diapedesis): across the endothelium. Migration through interendothelial spaces typically in post capillary venules. 3) Chemotaxis: Leucocytes move toward the site of injury along a chemical gradient of chemoattractants, which can be exogenous or endogenous. 	Polymerisation of actin at the leading edge of the cell establishes a "front wheel " drive in the direction of the injury
	3. Name some of the chemoattractants responsible for chemotaxis?	Most common exogenous agent Bacterial products . Endogenous: IL-8, C5a , and Leukotriene B4. All bind to specific receptors and promote polymerisation of actin.	Bold + 1
	4. What chemical mediators are responsible for pain, fever and tissue damage?	IL-1, TNF, Prostaglandins, Bradykinin, Neutrophil and Macrophage Lysosomal enzymes, Oxygen metabolites, NO.	Bold + 1

Stem: We will now mo	ove on to Anatomy.		
Question 2 Male pelvis model (Model No: MS2)	 Name the parts of the male pelvis visible on this model. Prompts: 	 1 Pubic bone, 2 Sacrum, 3 Coccyx, 4 Urinary bladder (a. apex, b. fundus, e. ureteral orifice, f. trigone), 5 Prostate, 7 Seminal vesicles, 8 Spermatic duct, 9 Ureter, 10 Urethral corpus 	Bold to pass
Subject: Anat	What are the • Skeletal features	cavernosum, 11 Penis , 12 Glans penis, 13 External urethral orifice, 14 Ischio-cavernosus muscle,	
LOA: 2	 Organs of the urogenital system Vascular structures 	 15 Testicle, 16 Epididymis, 17 Pampiniform plexus, 18 Testicular artery, 19 Cremaster muscle, 20 Rectum, 21 Common iliac artery, 22 Common iliac vein, 23 Peritoneum, 24/25 Inguinal ligament, 26 Femoral canal 	
	2. Name the parts of the urethra	 pre-prostatic part (surrounded by internal urethral sphincter prostatic part membranous (intermediate) part (surrounded by external urethral sphincter) penile (spongy) part 	Bold to pass
	3. What is the innervation of the urethra?	 prostatic nerve plexus to first 3 parts above dorsal n. of the penis (from pudendal n.) to penile part 	1 of 2 bold to pass
	Bonus Describe the anatomy of the prostate	 Surrounds prostatic part of the urethra (about the size of a walnut). base sits near the neck of the urinary bladder Apex is next to the urogenital diaphragm. Covered in a thick fibrous capsule, which houses the prostatic plexuses of nerves and veins. 5 lobes: anterior, middle, posterior, & 2 lateral Arterial supply via inferior vesical, internal pudendal, and middle rectal arteries. Venous drainage via the prostatic venous plexuses, which is located around the base and sides of the prostate. 	

Stem: We will now move of	on to Pharmacology. Treatment with C	iprofloxacin is commenced.	
Question 3	1. What class of drug is	Fluoroquinolone	Bold to pass
Fluoroquinolones (Chp 46)	Ciprofloxacin? 2. What is its mechanism of action?	Blocks DNA synthesis by inhibiting bacterial	Bold to pass
Subject: Pharm		topoisomerase II and IV	
LOA: 2			
	3. What is its antimicrobial spectrum?	Excellent Gram neg activity and moderate Gram positive activity.	Bold + 1 to pass
		Methicillin susceptible strains of S <i>Aureus</i> are susceptible, but methicillin resistant Staphylococci are resistant.	MIC for Gram neg are 1-2 mcg/mL.
		Also active against agents of atypical pneumonia – Mycoplasma and Chlamydiae	
		Intracellular pathogens such as Legionella and Mycobacterium.	
		Ciprofloxacin the drug of choice for anthrax.	
	4. What are the potential adverse effects of Fluoroquinolones?	 Prolonged QT (with some), Nausea, vomiting, diarrhoea (inc. C difficile) Rash Abnormal LFTs Photosensitivity Hyperglycemia in diabetics, Growing cartilage damage (not routinely recommended for < 18 yo or pregnancies) Tendonitis Allergy 	Bold + 2 dot points

Stem: We will now move	on to Physiology.		
Question 4 Micturition (pp 693-695) Subject: Phys LOA: 2	1. Describe the neurological pathways involved in normal micturition.	 Spinal reflex mediated by S2, S3 and S4 nerve roots. Facilitated and inhibited by higher centres; subject to voluntary control. First urge to void at 150ml. Marked fullness at 400ml - sudden rise in intra-vesical pressure triggers reflex contraction. Micturition reflex: Stretch receptors in bladder wall. Afferent limb in pelvic nerves. Parasympathetic efferent fibres (via same pelvic nerves) mediate contraction of detrusor muscle. Pudendal nerve (S2, S3 and S4) permits voluntary contraction of perineal muscles/external urethral sphincter, to slow or halt flow. Sympathetic nerves to bladder play no role in micturition 	To Pass: Spinal Reflex Parasympathetic control higher centre control
	2. Describe the muscles involved in micturition.	 Bladder: smooth muscle arranged in spiral, longitudinal and circular bundles. Circular bundle is called the detrusor muscle. Contraction of detrusor is responsible for involuntary emptying. External urethral sphincter – skeletal muscle sphincter of the membranous urethra. Relaxes during micturition. This is voluntarily controlled. Perineal muscles. Relaxes during micturition. Also voluntarily controlled. In males, urine left in urethra expelled by several contractions of bulbocavernosus muscle. Contraction of abdominal wall muscles aids expulsion of urine. NB: Internal urethral sphincter (smooth muscle bundles passing on either side of urethra) plays no apparent role in micturition. 	Bold to pass
	3. What prevents vesico-ureteric reflux?	Oblique passage of ureters through bladder wall keeps ureters closed except during peristaltic waves.	Bold to pass

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1. What are recognised aetiological	Tobacco smoking - 87% of cancers in recent or	Tobacco smoking and 2 other
Lung Tumours	factors in lung cancer?	current smokers- 10x increase in risk, Statistically	bold to pass
(pp 721-731)		associated with daily amount; inhalation	
	Prompt for detail: Are you aware of any	tendency; duration of habit, Histologic changes in	
Subject: Path	environmental factors that place you at	respiratory epithelium in smokers	
	greater risk for lung cancer?	Industrial Hazards	
LOA: 2		Ionising radiation, Uranium, Asbestos	
		Air pollution - Radon	
		Molecular genetics - Familial clustering	
		Precursor lesions - Squamous dysplasia and CIS,	
		Atypical adenomatous hyperplasia, Diffuse	
		idiopathic pulm neuroendocrine cell hyperplasia	
	2. What are the most common	Cough (75%), Loss of weight(40%),	3 to pass
	presenting symptoms of lung cancer?	Chest pain (40%), Dyspnoea (20%), Haemoptysis	
	3. What are the clinical effects of local lung tumour spread?	 Airway obstruction ->pneumonia, abscess, lobar collapse, Lipoid pneumonia, Obstruction of SVC leading to SVC syndrome Pleural effusion, Pericarditis or tamponade, Hoarseness (r/c laryngeal n), Dysphagia (oesophagus), Rib destruction, Diaphragmatic paralysis (phrenic nerve) Horner syndrome (sympathetic ganglia) 	5 of 8 bold to pass
	4. What paraneoplastic syndromes are associated with lung cancer?	Clinically significant in 1-10% of patients ACTH- Cushing's (predominantly small cell) ADH— hyponatraemia (predominantly small cell) PTH, PTH related peptide, PGE and some	2/3 bold + 1 other to pass
	PROMPT: What hormones might be produced?	cytokines- hypercalcaemia (predominantly small cell/squamous cell), <u>Calcitonin</u> - hypocalcaemia, Gonadotrphins-	

	gynaecomastia, 5HT and bradykinin-	
	wheeze/flushing	

Question 2	1. Where in the body is Ca2+ stored?	Bone: 99%, Plasma – bound to protein, Plasma –	Bold to pass
Calcium	,	unbound (free/ionised) - important second	
metabolism (pp		messenger and is required for coagulation, nerve	
377-378)		function and muscle contraction.	
Subject: Phys	2. How is the plasma Ca2+ level regulated?	Parathyroid Hormone : Increases plasma Ca2+ by mobilising Ca2+ from bone. Increases Ca2+	Bold and their effects on plasma Ca2+ (increase /
LOA: 1		reabsorption in kidney. Increases formation of	decrease)
20/11 1	Prompt:	1,25 DHCC in the kidney.	
	What hormones increase or decrease	1, 25 DHCC (from Vit D) increases Ca2+ absorption	
	plasma Calcium?	from intestine and kidneys.	
		Calcitonin (from thyroid) lowers circulating Ca2+	
		levels. Effect by inhibition of bone reabsorption.	
		It also increases Ca2+ excretion in urine	
		Glucocorticoids – decrease plasma Ca2+ by	
		inhibition osteoclast formation and	
		activity. <u>Oestrogens</u> – inhibit stimulatory effects	
		of cytokines on osteoclasts	
		Growth Hormone – increases Ca2+ excretion in	
		urine & absorption in intestine. Net balance may	
		be positive.	
		Hypercalcaemia is a complication of cancer.	
		Raised Ca2+ from either:	
		- bone erosion (local osteolytic hyperCa2+	
		- elevated Parathyroid hormone related	
		protein (PTHrP)	
	3. How does bone resorption occur	Osteoclasts are monocytes that develop from	Osteoclasts + 1 other
		stromal cells under influence of RANKL.	
		Attach to bone via integrins in sealing zone of	RANKL – receptor activator o
		the membrane.	nuclear factor kappa B ligand
		Hydrogen dependent proton pumps move into	
		cell and acidify the area.	
		 Acid dissolves hydroxyapatite and acid 	
		proteases break down collagen.	

	 Products move across osteoclast into interstitial 	
	fluid.	

Question 3	1. How does frusemide exert its action?	Selectively inhibits Na+-K+-2Cl- transporter in	Bold to pass
Frusemide (pp		thick ascending limb of loop of Henle thus	
258-260)		preventing resorption of Na+ & Cl-	
		Abolishes counter-current concentrating	
Subject: Pharm .OA: 1		mechanism leading to dilute urine.	
		Increased prostaglandin synthesis	
		-> inhibition of salt transport in thick ascending limb	
		-> increased renal blood flow, decreased	
		pulmonary congestion, decreased LV filling pressures	
	2. What are the pharmacokinetic	Rapid absorption after oral admin	List 3
	properties of frusemide?	• Oral bioavailability 50% (range 10 –100%)	
		• Highly protein-bound (>95%)	
		• 50% conjugated in kidney & 50% excreted in urine unchanged (tubular secretion)	
		• Elimination $t1/2 1.5 - 2$ hours	
		Peak effect 30 minutes IV / 1 hour oral	
	3. What are the potential adverse effects	Electrolyte disturbances	Bold plus 2
	of frusemide?	• hypokalaemia,	
		 hyponatraemia, 	
	PROMPT:	 hypomagnesaemia, 	
	What are the electrolyte disturbances?	hyperuricaemia	
		Postural hypotension & dizziness	
		Metabolic Alkalosis	
		Allergy - rash, eosinophilia, interstitial nephritis	
		• Increased LDL & triglycerides, decreased HDL	
		Hyperglycaemia	
		Ototoxicity (high dose IV)	

Stem: We will now r	move on to Anatomy. She has limited shoul	der movement due to bony metastases.	
Question 4	1. What are the articulating surfaces in	Ball-and-socket synovial joint, Rounded head of	Bold to pass
Shoulder (bone	the shoulder joint	humerus, Shallow glenoid cavity of scapula,	
/model)		deepened by labrum	
Subject: Anat	2. What structures stabilise the shoulder	Fibrocartilaginous glenoid labrum.	Rotator cuff (3/4 muscles),
LOA: 1	joint?	Coraco-acromial arch,	plus 2 others to pass
		Anterior glenohumeral ligaments	
		Coracohumeral ligament	Need to show understanding
		Transverse humeral ligament	that there are different
		Rotator cuff (SITS) muscles, Supraspinatus,	elements that contribute to
		Infraspinatus, Teres minor, Subscapularis	stability.
	3. What muscles are responsible for	Abduction - Deltoid (esp acromial part),	Bold to pass
	abduction and adduction of the shoulder	Supraspinatus (initiates), + upward movement of	
	joint?	scapula	
		Adduction -Pec major and lat dorsi acting in	2/4 Bold to pass
		concert, Teres major and long head of triceps (synergists)	
	Bonus		
	What muscles are responsible for the	<u>Flexion -</u> Pectoralis major (clav head), Deltoid (clav	
	other movements of the shoulder?	and anterior acromial parts), Coraco-brachialis	
		(synergist)	
		Extension -Spinal part of deltoid, Lat dorsi, teres	
		major, long head of triceps (synergists)	
		Medial rotation- subscapularis,	
		pec major, lat dorsi, teres major, deltoid- clavicular part (synergists)	
		Lateral rotation -infraspinatus, teres minor,	
		deltoid- spinal part (synergists)	
		Circumduction	
	Bonus:		
	Outline the bursae of the shoulder joint.	Subscapular bursa- located between neck of	
		scapula and subscap tendon. Protects tendon.	
		Subacromial (subdeltoid) bursa -Between acromion, CA ligament and deltoid superiorly, and	
		supraspinatus tendon and joint capsule inferiorly	
		Facilitates movement of supraspinatus tendon	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 VQ mismatch (West Chp 5)	 What are the causes of hypoxemia in a patient breathing room air? 	 Hypoventilation 2.Diffusion limitation Shunt 4. Ventilation/perfusion (V/Q) inequality 	3 of 4 to pass
Subject: Phys LOA: 1	2. How does the ventilation/perfusion ratio change in different regions of the lung?	V/Q ratio is high at apex (blood flow minimal) and decreases down the lung to the base. PO2 highest at apex but blood flow is greatest at the base where PO2 is lowest (can be 40mmHg difference) Respiratory exchange ratio (CO2 output/O2 uptake) highest at apex where blood flow is lower	BOLD + general concepts to pass
	3. What is the effect of ventilation- perfusion inequality on arterial PO2 and arterial PCO2? <i>Prompt if required</i> Why does V/Q inequality cause reduced arterial PO2 while arterial PCO2 remains relatively normal?	 Much greater influence on PO₂ than CO₂. O2 dissociation curve nonlinear. Areas with high V/Q ratio add relatively little O2 with increased ventilation. Whereas areas with low V/Q ratio have lower PO2 (close to mixed venous) overall PO2 is reduced CO2 dissociation curve is linear in the working range. Chemoreceptor stimulation increases ventilation and CO2 output especially in lung areas with high V/Q ratios. normal PCO2 (minimal change) 	BOLD + demonstrates understanding
	oving to anatomy. A CXR is performed.	1	
Question 2 CXR including understanding of pleural reflections Subject: Anat LOA: 2	 Demonstrate the lobes of the lungs What are their immediate relationships (if not answered in Q1) Prompt: what are the boundaries of the lobes 	 Right superior mediastinum to apex ; right upper lobe RUL: apex -horizontal fissure /upper right mediastinum medially Right heart border; right middle lobe RML: right heart border & horizontal fissure (superior border 4th rib) to 6th costal cartilage 	Demonstrate all 5 lobes

	 Describe the surface anatomy of the parietal pleura 	Left upper mediastinum to apex; left upper lobe LUL: Apex- 4LICS parasternal line,6 th LICSMCL & 5 th LICS AAL Left heart border ; Lingula lobe : left heart border Lower lobes posteriorly, sit over domes of diaphragms rise as high as 3 rd intercostal space posteriorly R & L lower lobes: from Obliques fissures (T2 spinous process-6 th costal cartilage anteriorly) to level T10 spinous process posteriorly , 10 th ribs at scapular line & 8 th ribs in MAL. supraclavicular fossa, medially follow the middle of the sternum to the level of the 6 th intercostal cartilage, deviates laterally reaching MCL at 8 th rib, MAL at the 10 th rib, paravertebral line 12 th rib. Notch on Left.	Reasonable description
Stem: We are now m Question 3	oving to pathology. The rash is diagnosed a 1. What are the 2 clinical conditions caused by this virus	as Varicella Zoster Chicken pox and shingles	Both
Varicella Zoster (p 353) Subject: Path LOA: 1	2. Describe the pathogenesis and clinical course of infection with this virus Prompt: start with how the virus is transmitted	Starts with aerosol or direct contact spread \rightarrow haematogenous dissemination \rightarrow vesicular skin lesions \rightarrow vesicles rupture, crust over then heal Some virus lies dormant in dorsal root ganglia and reactivated later with immunosuppression	
	3. What are the complications of chicken pox	Lung → interstitial pneumonia Nervous system - encephalitis, transverse myelitis Skin and mucous membranes → shingles, bacteria superinfection Gut – necrotising visceral lesions	

Stem: . We are now n	noving to pharmacology. Treatment is com	menced with Acyclovir	•
Question 4	 What are the indications for acyclovir in the ED? 	HSV – encephalitis; VZV, patients with HIV, genital herpes	Bold
Acyclovir (pp 862-			
864)	2. Describe the mechanism of	Inhibition of viral DNA synthesis	Bold
Subject: Pharm	action of acyclovir.	 Irreversible binding to viral DNA polymerase. Incorporation in to viral DNA with termination 	
LOA: 2		Specificity for virus-infected cell (virus-specific thymidine kinase).	
	3. Describe the pharmacokinetics of acyclovir?	Short half life 2.5 hrs (5xdaily dosing oral); low oral bioavailability; mostly excreted unchanged in urine; CSF 20-50% of plasma; wide distribution	Bold + 1 other
	 Name some side effects of acyclovir 	Nausea, vomiting, diarrhoea, headache, reversible renal toxicity Neuro – tremor, delirium, seizures	2 to pass

QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
How is oxygen carried in the blood? Prompt: Which dominates	Dissolved : amount dissolved proportional to partial pressure (Henry's law)-0.3ml O2/100ml blood at PO2 100mmHg Most Combined with Hb : 20.8 ml O2/100ml blood(at Hb level of 15g/dl)	Bold
Draw and label the oxygen dissociation curve	SaO_2 % $\frac{100}{90}$ $\frac{90}{90}$ $\frac{90}{70}$ $\frac{90}{$	Draw correct shape and have 2 points of saturations eg 27mmHg SaO2 50%, 30mmhg SaO2 60% 40mmHg SaO2 75%, 56mmHg SaO2 90%, 80mmHg SaO2 95%, 90mmHg SaO2 97%
What are the implications of this curved shape? Prompt: what happens to the top + bottom	UPPER- If PO2 alveolar gas falls (eg ARDS in acute pancreatitis) loading of O2 little affected. LOWER- Steep lower part means large amounts of O2 unloaded at peripheral tissues for only small drop in capillary PO2	Explain concept of loading an unloading of oxygen
changing to pathology.		·
 What are the potential causes of this man's pancreatitis? What is the likely pathogenesis of 	 Gallstones, alcohol, iatrogenic, viral, hyperlipoproteinaemia, hypercalcaemia, drugs, trauma, shock, vasculitis, genetic mutations, scorpion bite, atheroembolism, duct obstruction (tumour, parasites etc) Autodigestion of the pancreatic 	 Bold plus 1 Bold
	How is oxygen carried in the blood? Prompt: Which dominates Draw and label the oxygen dissociation curve What are the implications of this curved shape? Prompt: what happens to the top + bottom hanging to pathology. 1. What are the potential causes of this man's pancreatitis?	How is oxygen carried in the blood? Dissolved: amount dissolved proportional to partial pressure (Henry's law)-0.3ml O2/100ml blood at PO2 100mmHg Most Combined with Hb: 20.8 ml O2/100ml blood (at Hb level of 15g/dl) Draw and label the oxygen dissociation curve What are the implications of this curved shape? Implications of this curved blood at po2 alveolar gas falls (eg ARDS in acute pancreatitis) loading of O2 little affected. LOWER- Steep lower part means large amounts of O2 unloaded at peripheral tissues for only small drop in capillary PO2 hanging to pathology. 1. Gallstones, alcohol, iatrogenic, viral, hyperciloporteinaemia, hypercalcaemia, drugs, trauma, shock, vasculitis, genetic mutations, scorpion bite, atheroembolism, duct obstruction (tumour, parasites etc)

Stem: Another nati	3. What are the acute complications of severe pancreatitis?	Causes interstitial inflammation and oedema, proteolysis, fat necrosis and haemorrhage 3. Haemolysis, DIC, fluid sequestration, ARDS, diffuse fat necrosis. Peripheral vascular collapse; shock; acute renal tubular necrosis	3. 3 answers to pass
Question 3	Identify the structures in this photo of	Sciatic nerve (19), gluteus maximus (5), long head	Bold + any 4 others
Posterior Thigh	the posterior thigh.	biceps (9), semitendinosus (22),	
Muscles photo		semimembranosus (21), ischial tuberosity (8),	Prompt bold if required.
		gracilis (6), iliotibial tract (7), adductor magnus	
Subject: Anat		(1), popliteal artery and vein(16,17), quadratus	
LOA: 1		femoris (18)	
	What are the clinical features of a	Motor: SN supplies all posterior thigh muscles	Motor 3 bold
	severed sciatic nerve in the upper thigh?	(depending on level of injury these may be	
		affected), all leg and foot muscles loss of hip	
	Prompt: what does the sciatic	extension and knee flexion. All ankle (Flex/Ext ,	
	nerve supply distal to this point.	inversion, eversion) and toe movements lost.	
		Sensory: skin of most of leg and foot ->posterior	Sensory 3 bold
		and lateral leg, sole of foot, lateral and dorsum	
		of foot.	
	move onto pharmacology. He is agitated. Y		
Question 4 Olanzapine &	 By what routes can Olanzapine be administered? 	1. Oral (Tab or wafer); Parenteral - IMI, Depot IMI	Bold
atypical	2. What dose, and route would you use	2. Gives dose (10-20mg), same for each route	Reasonable answer
antipsychotics	in this situation?		
(Chp 29)	3. What are the advantages of	3. less hypotension; less tachycardia; less	Bold
Subject: Pharm	olanzapine over older "typical"	extrapyramidal effect; high clinical potency; less	
	antipsychotics?	effect on prolactin; more effective vs neg&pos	
LOA: 2	Prompt: e.g. chlorpromazine	psychotic symptoms and cognition; multiple routes of admin	
	4. What are some of its disadvantages?	4. Anticholinergic effects; lowered seizure	2 disadvantages
	Prompt if needed – what about	threshold; weight gain; DM; Hyperlipidaemia;	_
	longer term effects	expense	

Stem: A 90 yo lady a	rrives by ambulance with confusion and agi	itation. She is hypotensive. We will start with Physio	logy.
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Baroreceptors / regulation of blood pressure (pp 589- 592)	 What are baroreceptors and where are they located? 	 Stretch receptors in the walls (adventitia) of the heart & blood vessels, impt in control of BP (esp short term). Arterial- carotid sinus/Ao arch. Low pressure- Atria at entrance of IVC and SVC, Pulm veins and pulm circulation. 	Bold plus 2 locations.
Subject: Phys LOA: 1	2. What stimulates these receptors?	 Distension of the structures above. More sensitive to pulsatile than constant pressure. Maximal firing at 150mmHg (@ Carotid sinus) 	Bold
	3. What are their effects?	 Inhibit tonic sympathetic drive& inc vagal drive=>vasodilation, venodilation, hypotension, bradycardia (tachycardia in low pressure baroreceptors), ↓CO. Allows rapid adjustments in BP in response to abrupt changes in posture, blood volume, cardiac output, or peripheral resistance 	3/5 end effects
Stem: We will now	move on to Pharmacology. Haloperidol is si	uggested for her agitation.	•
Question 2 Haloperidol (pp 503-513) Subject: Pharm LOA: 2	What are the pharmacodynamics of haloperidol?	Butyrophenone- high potency D2 receptor effects (dopamine antagonist), high extra-pyramidal side effects, low sedative, low hypotensive, minimal anticholinergic effects, minimal 5-HT and H1 blockade effects.	2/3 Bold
	How does olanzapine differ?	Thienobenzodiazepine- less D2 receptor effects, high 5-HT receptor blockade effects, low extrapyramidal effects, medium sedative, low hypotensive and anticholinergic effects, low H1 blockade effects	2/3 Bold

Stem: We will no	w move on to Anatomy. A recent CT brain is	available.	
Question 3	1.Identify the intracranial structures	Lobes: frontal temporal parietal occipital	Bold to pass
CT brain	visible on this CT	Lat ventricle : anterior and posterior horns	Prompt if required
	(level of anterior & posterior horns lat	3 rd ventricle, Caudate nucleus, choroid plexus	
Subject: Anat	ventricles)	Lentiform nucleus (putamen & globus pallidus)	
		Thalamus, Septum pellucidum, Falx	
LOA: 1		Anterior & posterior limbs of internal capsule	
		Sylvian fissure	
	2. What arteries supply the main areas of the cerebral cortex?	ACA area anterior to anterior horns lat ventricle (frontal and parietal lobes medially and	Ant, Middle and Post CA Reasonable distribution
	Prompt: point	superiorly)	
		MCA area between the ant & post horns LV (most	
		of lateral surface anterior, parietal, and	
		temporal lobes)	
		PCA area posterior to posterior horn LV (Inferior and medial aspects of occipital and temporal	
		lobes)	
	3. Describe the venous drainage of the	3. Superior cerebral veins (superolateral surface	2/3 bold
	cerebral hemispheres	of the brain) > superior sagittal sinus .	
		Inferior and superficial middle cerebral veins	
		(inferior, posterior and deep aspects of cerebral	
		hemispheres) > straight, transverse and superior	
		petrosal sinuses.	
		Great cerebral vein (midline vein formed from the	
		paired internal cerebral veins) >merges with	
		inferior sagittal sinus to form the straight sinus .	
		Eventually terminate in Internal Jugular veins	

	/ move on to Pathology. On examination she		
Question 4	What conditions can lead to infarction of	1. Acute arterial obstruction	BOLD to pass
Ischaemic Bowel	bowel	Atherosclerosis, Aortic aneurysm,	Minimum 2 from each bolded
(pp 791-793)		Hypercoagulable state, OCP use, Embolism	group
		2. Intestinal hypoperfusion	
Subject: Path		cardiac failure, shock, dehydration, vasoactive	
		drugs	
LOA: 1			
		systemic vasculitis	2 from non-bolded
		HSP, Wegeners granulomatosis	
		Mesenteric venous thrombosis	
		Hypercoagulable state, Invasive neoplasm,	
		Cirrhosis, Trauma, Abdominal masses	
		Miscellaneous	
		Radiation, Volvulus, Stricture, Amyloid, diabetes	
		Radiation, volvalus, stricture, Anyloid, diabetes	
	What are the clinical features of	Severe pain , may be transient. Tenderness,	Bold + 3 features
	ischaemic bowel?	peritonism, nausea, vomiting, bloody diarrhoea,	
		melaena, shock, hyper/hypothermia, sepsis	
	What parts of the bowel are most	Watershed zones	Must be able to explain why
	susceptible to ischemic injury	- Splenic flexure, sigmoid colon, rectum	watershed zones are most at
	And why?	 Located at end of arterial supply 	risk
		Surface epithelium : Villi more at risk than crypts	
		Intestinal capillaries run from crypts up villi to	
		surface	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Describe the pharmacokinetics of	Oral commonly	Bold plus one more
	oxycodone?	Good oral absorption	
Oxycodone (p 558)		High Vd	
, , ,	Prompt: Describe the pharmacokinetics	Low first pass metabolism CW others	N+V a particular concern in
Subject: Pharm	of opiates.	10 morphine = 4.5mg oxycodone	context of penetrating eye injury
LOA: 1-2		duration 3-4h, longer if CR formulation. Hepatic	
		met	
	What adverse effects might you		3 to pass
	anticipate?	Sedation/Respiratory	
		depression/N+V/hypotension/dysphoria/biliary	
		colic/pruritis/caution in renal failure	
			2 to pass
	When prescribing oxycodone what	Smaller doses at longer intervals/establish goals	
	prescribing strategies may help in	at start of Rx/limit doses/use of other	
	reducing the development of,	analgesics/frequent evaluation of ongoing	
	dependence.	need/use of modified CR formulations	
Stem: Moving on to physic	blogy You assess his visual acuity as 6/24.	•	•
Question 2	How is visual acuity measured?	Measurement from Snellen chart viewed at a	numerator is the distance at
	What does the fractions of a VA of 6/24	distance of 6m or 20 feet; 6/24 indicates reduced	which the chart is read; the
Eye / Acuity / Vision (pp	represent?	VA	denominator is the smallest line
178 -183)		Optical factors The state of the image forming	that can be read; 6/6 indicates
Subject: Phys	What factors influence visual acuity?	mechanisms/sharpness of focus	normal vision;
LOA: 2		Retinal factors the state of the cones	
		Stimulus factors (illumination, brightness of the	2/3 to pass
		stimulus, contrast between stimulus and	
		background, length time exposed to stimulus);	
		sensitivity and interpretative ability of the brain	
		Resolving power of the eye, property of the cones	
	Why is the fovea important for visual	fovea is the point where VA is greatest ; fovea is	
	acquity	the centre of the macula, a thinned out rod free	
		portion of the retina where the cones are densely	One of bold
		packed & each synapses on a single bipolar cell	

Stem: Moving on to anatomy	y. He has abnormal eye movement	-	-
Question 3 Eye (Model) – (model no. F	Identify the muscles responsible of eye movement.	Recti: Superior (elev, add, med rot); Inferior (dep, add, lat rot); Medial (add); Lateral (abd) Obliques: Superior (dep, abd); Inferior (elev, abd)	All Bold to pass
13)	Describe their actions.	Oculomotor (III) N to all, except Abducent (VI) N	Bold plus one to pass
Subject: Anat LOA: 2	What nerves supply these muscles?	to Lateral R, and Trochlear (IV) N to Sup Obl	
	How are the actions of these muscles tested clinically? <i>Prompt: Why is the "H" pattern used?</i>	In Abd (LR): Elev (SR) and Dep (IR) In Add (MR): Elev (IO) and Dep (SO)	abd and add isolates recti and obliques to pass
Stem: Moving on to patholog	 gy: Six weeks later ne develops sympathetic	 c ophthalmia, which is a Type IV hypersensitivity reac	tion
Question 4	1. Describe the sequence of events that	Injury	
Type 4 hypersensitivity	lead to this reaction.	Initiated by antigen sensitised CD4+ or CD8+ T	
reaction (pp 205-208; 1356)		cells	Requires antigen and either
Subject: Path	Prompt: what cells are involved?	Retinal antigens may be transported in the lymphatics of the damaged eye Reaction may occur in both eyes causing a Pan Uveitis.	cytokine or direct cellular mechanisms to pass
LOA: 1		CD4+ predominate in autoimmune disease CD8+ in post infectious (esp viral) reactions	
		Can be cytokine (CD4+ Th1 or TH17 cells involved)	
		or direct cellular (Cyotoxic lymphocyte) mediated	
	2. What tissue changes would occur	tissue injury (either satisfactory). Perivascular cellular infiltrates, tissue oedema,	
		granuloma formation, cell destruction.	
			(2/4 to pass)
	3. Name other examples of Type IV	Type I diabetes	
	hypersensitivity reactions.	Multiple sclerosis	
		Rh arthritis	(2 examples to pass)
		Inflammatory bowel disease	
		Guillain Barre Contact sensitivity dermatitis	
		Tuberculin reaction	
		Granulomatous diseases	
		Viral hepatitis	

 \bigcirc

ACEM PRIMARY VIVA D

Thursday Afternoon Session 2 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	What is drug biotransformation?	Drug metabolism to allow drugs to become inactive or by	Bold
Biotransformation – Phase 1		increasing excretion by making them more hydrophilic, or	
and 2 reactions with an		by metabolising them to less active agent.	
emphasis on Suxamethonium			
(Chp 4)		Phase 1 – unmasking functional group (-OH, -NH2, -SH) to	
(Chp 4)	Describe phase 1 and phase 2 reactions?	become more polar metabolite. Includes oxidation,	Bold
Subject: Pharm		deamination, hydrolysis, reductions	
		Phase 2- conjugation with endogenous substrate to	
LOA: 1		become highly polar conjugate	
		Rapid phase 1 hydrolysis by butyrycholinesterase and	
		pseudocholinesterase in liver and plasma	
	How is Suxamethonium metabolised?	Genetically deficient in BCHE so slowed metabolism	One of the bold
	Why may a patient have a prolonged		
	paralysis following Sux		
Stem:Moving on to physiology		•	•
Question 2	By what processes does the body lose heat?	Radiation & Conduction (70% of loss at 21 °C)	Bold to pass
Hypothermia /		Vaporization of sweat (27%)	
thermoregulation (pp 316-		Respiration (2%)	
320)	How does the body produce heat?	Urination & defecation (1%)	
Subject: Phys		Basal metabolic processes	
LOA: 1		Food intake	Bold to pass
	What temperature-regulating mechanisms	Muscular activity	
	are activated by the cold?	Shivering	
		Hunger	
		Increased voluntary activity	4 to pass
		Increased secretion of Adr + NorAdr	
		Decreased heat loss mechanism	
	What part of the brain controls the reflex	Cutaneous vasoconstriction	
	responses activated by cold?	Curling up Horripilation	
		The posterior hypothalamus	
			bold

Question 3 Cerebrovascular Disease (pp 1290-1295) Subject: Path LOA: 1	What are the types of cerebral ischemic injury? Prompt: Describe the patterns cerebral ischemic injury	 Global cerebral ischemia (ischemic/ hypoxic encephalopathy) when there is a generalised reduction of cerebral perfusion Focal cerebral ischemia follows reduction of blood flow to a localised area of the brain 	Both types and description
	What are the causes of focal cerebral infarction? Prompt: Give examples	Embolic (from cardiac mural thrombi; thromboemboli from arteries, esp. carotid; paradoxical assoc with cardiac anomalies; tumour, fat or air), thrombotic arterial occlusion/ in situ thrombosis (large vessel disease); Vasculitis (small vessel disease) infectious (immunosuppression and aspergillus, CMV encephalitis, syphilis, TB); non-infectious eg PAN, primary angiitis; Others eg amphetamines, cocaine, heroin; dissecting aneurysm extracranial arteries; hypercoaguable states Lacumar infarcts (in lenticular nucleus, thalamus, internal capsule, deep white matter, caudate nucleus, pons); slit haemorrhages; hypertensive encephalopathy; massive	3 causes plus 1 example of each
	What are the pathological effects of hypertension on the brain?	intracerebral haemorrhage)	4 out of 4
Stem: Moving on to anatomy S	he has a swollen right elbow.		
Question 4 Elbow X-ray Subject: Anat LOA: 1	Identify the bony features on this Xray	Medial / Lateral epicondyles, capitulum, olecranon, radius – head/neck, olecranon fossa, coronoid fossa, trochlea, proximal radio-ulnar joint, coronoid process of ulna Bony factors – shape of trochlea / olecranon fossa	6 to pass
	What factors determine the stability of the elbow joint? Prompt – What are the ligaments of the elbow	Joint capsule – fibrous joint capsule weak Ligaments – radial collateral ligament – lateral epicondyle and blends with the annular ligament of the radius (which holds the radial head in the radial notch of the ulna). - medial ulnar collateral ligament from medial epicondyle to the coronoid process and olecranon of the ulna - 3 bands 1. Anterior – strongest 2. Posterior – weakest 3. oblique – deepens trochlear notch Muscles – biceps, brachialis,(BR), triceps RCL & UCL & annular ligament	Bone and ligaments 3 of 4 bolded

ACEM PRIMARY VIVA D Friday Morning Session 3

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Which factors determine the volume of	Drug factors; lipid solubility (high in TCA), pKa, pH,	At least 2 from each group
Tricyclics including Volume of	distribution of a drug?	protein binding (high in TCA).	
distribution (Chp 30)		Patient factors; age, gender, comorbid disease (eg.	
Subject: Pharm		Oedema or ascites), body fat, blood flow to tissues.	
		TCAs have a large Vd (5-30L/kg), tissue concentrations	
LOA: 1	Describe the volume of distribution of	are high especially in well perfused organs such as the	
	tricyclic antidepressants	brain and heart.	bold
	How does this influence their toxicity?		
		Alkalinisation (Bicarbonate or hyperventilation)	
	What therapies for tricyclic toxicity might	increases plasma protein binding of the free drug	
	reduce their tissue distribution?	removing it from the tissues reducing its tox	bold
Stem: Move onto Anatomy. You	u insert a femoral venous line.		
Question 2	Demonstrate the boundaries of the femoral	Inguinal ligament (11), medial border of Sartorius (23)	3/5 to pass
Femoral Triangle (photo)	triangle.	and lateral border of adductor longus (1) form the	
		triangle, pectineus (med) and iliopsoas (lat) form the	
Subject: Anat		floor.	all content
LOA: 1	What are the contents of the femoral	Contents = femoral vein (6), artery (4) and nerve (5)	
	triangle.	(med to lat) and deep inguinal lymph nodes.	3/3 to pass
	What surface markings help would you look		
	for when trying to locate the femoral vein?	Artery is found below inguinal ligament, midway	bold
	Which veins drain into the common femoral	between ASIS and pubic tubercle, vein is just medial	
	vein	to artery	
		Continuation of the femoral vein, popliteal vein,	
		receives profunda femoris and great saphenous vein	
		(7), ends posterior to the inguinal ligament where it	
		becomes the external iliac vein. Also receives	
		superficial epigastric vein (27), superficial circumflex	
		iliac vein (25) and superficial external pudendal vein	
		(28).	
Stem: Moving on to Pathology.	She has a history of chronic alcohol abuse.		
Question 3	1. Describe the pathological effects on the	1. Steatosis: fatty change, perivenular fibrosis	Bold with 3 morphologic features o
-	liver long-term alcohol ingestion.	, , ,	each to pass.

Alcoholic Liver Disease (pp 857-860) Subject: Path LOA: 1	 PROMPT: please describe the morphological features 2. Which of these conditions reversible? 3. What are the possible sequelae of cirrhosis? Prompt: Complications? 	 2. Hepatitis: liver cell necrosis, inflammation, Mallory bodies, fatty change, fibrosis 3. Cirrhosis: extensive fibrosis, hyperplastic nodules 4. (Hepatocellular carcinoma) Steatosis and Hepatitis are reversible. Cirrhosis irreversible. Portal Hypertension, GIT Bleeding, Hepatic Failure, Coagulopathy, Hepatocellular Ca, Hepatorenal Syndrome, Hepatopulmonary Syndrome, Encephalopathy, Infection 	Bold to pass Bold plus 3
Stem: Moving on to Physiology			
Question 4 Dead Space (pp 19-21) Subject: Phys LOA: 1	 What is DEAD SPACE? 2. What types of DEAD SPACE are there?" Prompt explain difference between the two types 3. How is it measured? (bonus) 	 Portion of the tidal volume that does not participate in gas exchange V_T = V_D + V_A 1. ANATOMICAL Volume of conducting airways – trachea, bronchi, terminal bronchi (16 gen) About 150mls of 500ml V_T Measured by Fowler's method Determined by: Increased diameter of airways during inspiration Size & posture of individual 2. PHYSIOLOGICAL Volume of gas that does not eliminate CO₂ Same as anatomical DS in normal individuals Increased in lung disease because of inequality of blood flow and ventilation within the lung 	Demonstrate principle of bold to pass Two types dead space and describe what it is

•

•

AGREED MARK:

•

.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Femur (Bony Landmarks)	Identify the important features of this bone	Head, fovea, neck, greater / lesser trochanters, trochanteric fossa, intertrochanteric crest (post) / line (ant), shaft, linea aspera, med + lat femoral condyles, intercondylar fossa, adductor tubercle, patellar surface	Bold + 2 to pass
	Describe the blood supply to the head of the femur	Via posterior retinacular arteries of medial circumflex femoral artery . Lateral circumflex femoral artery contributes a little via cruciate anastomosis. Possibly from foveal artery (branch of obturator artery)	Bold to pass
	What is the clinical significance of this	Intracapsular #s (subcapital, transcervical) may lead to AVN of head of femur, especially if displaced	Bold to pass
Question 2 CT Brain (Describe Structures)	Identify the anatomical features of the brain shown on this CT	Lateral ventricles-anterior and posterior horns Choroid plexus Lobes- frontal, parietal, occipital and temporal (3 of 4) + Gyri/ sułci Falx cerebri Thalamus, caudate nucleus, internal capsule(ant/post limb) Lentiform nucleus	Bold to pass
	Describe the circulation of CSF in the brain	Formed in choroid plexus in lat/3/4 ventricles. Drains from lat to 3 rd via iv foramen then 4 th via aqueduct then into SA space and brainstem cisterns. Absorbed from SA space by arachnoid granulations	Bolded info plus sequence of lat to third to 4 th ventricles

.

•

Question 3 Photo Left Lung Root/Mediastinum (Describe Structures)	This is a longitudinal section through the hilum of the left lung. What structures can you identify?	23,Heart (LV), 26, pericardium, 3,32 aorta , 18 L subclavian art, 4 L costocx trunk,12 L internal thoracic art,10 L common carotid,22 vagus n, 16 L pulm art , 15 L main bronchus, 11,21 pulm vv,9 L brachioceph v,31 sympathetic trunk, 14 phrenic nerve	Bold plus 4 others to pass Bold to pass
	What are the branches of the aortic arch	Brachiocephalic trunk (dividing into RCC and RSC), L common carotid and L subclavian	
Question 4 Model Female Pelvis (Organs)	Identify the major anatomical structures in this model.	Rectum, Uterus, Bladder, Sacrum, Pubic symphysis, Peritoneum, vagina, ovary, fallopian tube, Round ligament Broad ligaments, Int and Ext iliac vessels	8 to pass
	Name the potential spaces where free fluid can accumulate in the pelvis and demonstrate their boundaries	Vesicouterine pouch (anterior to bladder) & Rectouterine pouch (of Douglas) between ant rectum and post uterus, open above to peritoneum, close to cx and post fornix of vagina, inferior most ext of peritoneal cavity	ID name and location of each in bold
Question 5 Discussion Movements of Thumb	Describe the origins and insertions of the muscles in the thenar eminence	APB, FPB, OP (all originate flexor retinaculum and scaphoid/trap tubercles) APB inserts lat side base prox phal, OP inserts lat 1 st MC FPB both heads insert base lat prox phal.	All bold and 1 correct origin and 1 correct insertion
	Demonstrate the movements produced by these muscles.	OP opposes (mc to middle palm, rotates), ABD abducts the MCP jt, helps opposition, FPB flexes the MCP jt	Demonstrate 2 correctly
	What nerves innervate these muscles?	All recurrent br. Med n, except deep head FPB -deep Br ulnar nerve variable ++ or recurrent Br Median nerve	Must ID median n

•

.

.

•

.

.

.

.

.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Bone Tibia (Bony Landmarks)	Identify this bone and its main features	Side bone, identify anterior and interosseus borders Tibial tuberosity, shaft, medial malleolus, tubercles of intercondylar eminence, medial and lateral condyles, facet for fibula, soleal line,	Bold plus 6 features
	Describe the articulations between this bone and the fibula	Tibiofibular joint (superiorly) and tibiofibular syndesmosis (inferiorly) TF joint- synovial joint b/w facet fibular head and on posterolaterally on lateral tibial condyle. Joint capsule strengthened by ant and posterior ligaments of the fibular head TF syndesmosis-compound fibrous joint, it is the fibrous union of tib & fib by the IOM and the ant and post tibiofibular ligaments	Both joints identified and 1 classified to pass
Question 2 CT Abdomen (Describe Structures)	Identify the structures visible on this CT	Liver/duodenum/IVC/pancreas/splenic vein/kidneys/spleen/aorta/coeliac trunk/crus of diaphragm/small bowel/ribs, vertebral body	Bold plus 2 others to pass Prompt for pancreas
	What are the branches of the abdominal aorta?	Single – coeliac trunk, SMA, IMA Paired –gonadal, renal, suprarenal, inferior phrenic, lumbar, subcostal. Terminating as common iliacs	Bold plus two paired branches to pass
Question 3 Photo Thoracic Inlet (Describe Structures)	Identify the vascular structures in this photo.	Common carotid aa left 14, & right 19, brachio- cephalic trunk 4, , right subclavian a. 21, brachiocephalic vv right 18 & left 13, subclavian vv 24, left internal jugular v 8, thyrocervical trunk 32	5/8 to pass
	What is the anatomical relationship of the internal jugular vein to the carotid artery?	Superiorly IJV lies posterior to ICA Passes inferiorly in the carotid sheath with vagus n between IJV and carotid Inferiorly IJV lies lateral to CCA, passes deep to heads of SCM	2 of 3 bold to pass
	Describe the surface marking of the internal jugular vein.	From earlobe/mastoid to medial end of clavicle	Bold to pass

.

Question 4 Model Heart (Coronary Artery/Valves)	Using this model, describe the arterial supply of the Heart	Main coronary vessels arise from the corresponding aortic sinuses above the AV R Coronar y courses inferiorly in AV grove, 3 Branches – SA nodal, Marginal, Posterior Interventricular L Coronary – bifurcates into Circumflex & LAD Cx gives off Marginal Br , LAD gives off Diagonals	Bold and 1 other to pass
	Using this model identify the chambers and valves of the heart	RA, Tricuspid v, RV, Pulmonary v, LA, Mitral v, LV, Aortic v	Must identify all chambers and valves
	Identify the components of the Tricuspid V	3 cusps – Anterior, Posterior & Septal Chordae Tendinae Papillary Muscles	2 of 3 to pass
Question 5 Discussion Sensory Innervation (Upper Limb)	Demonstrate the dermatomes of the upper limb	C4 – lateral shoulder C5 – lateral arm C6 – lateral forearm & thumb C7 – middle / ring fingers & center of posterior forearm C8 – little finger, medial hand / forearm T1 – medial forearm, inferior arm T2 – medial arm, axilla	5 to pass. General concept of distribution required
	On your own hand demonstrate which nerves supply sensation to which parts of the hand? Prompt: Demonstrate the peripheral cutaneous innervation of the hand	Median –palmar & distal dorsal tips of lateral 3.5 digits Ulnar – palmar & dorsal surface of medial 1.5 digits Radial – dorsal aspect of lateral 3.5 digits (excluding tips)	All 3 nerves & correct distribution

·

• •

.

. .

.

.

•

Morning Session 3 Candidate Number:

AGREED MARK:

-

.

.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: C1/C2 (Bony Landmarks/Articulatio	C2 – identify the features of this bone.	C2 (axis). Body, dens, superior and inferior articular facets, pedicle, transverse process, transverse foramen, lamina, spinous process, vertebral foramen,	Dens and 5 others to pass
	Describe the joints between C1 and C2	Lateral atlanto-axial joints (facet joint) and joint between anterior arch of C1 and dens. Both synovial joints – first one hinge, second one pivot	ID location of both joints to pass
	Which ligaments stabilise these joints?	Cruciate (cruciform) ligament – vertical and transverse components Alar ligaments Post longitudinal lig continued as tectorial membrane Anterior longitudinal ligament, Ligamentum flavum, Nuchal ligament, Interspinous ligament, Joint capsule	2 of 3 bold and 1 other
Question 2 X-Ray Foot AP/lat	Identify the bones in this xray	Calcaneus, Talus, Navicular, 3 Cuneiforms ,cuboid and metatarsals, phalanges, distal tibia, distal fibula).	4 of 5 bold plus 2 others
	What are the movements that occur in the foot and the joints where those movements occur?	Inversion / eversion - subtalar (talocalcaneal) and calcaneocuboid Flexion /extension at MTP joints Flexion /extension at IP joints	Must ID eversion /inversion and name one of the two joints involved
Question 3 Photo Palm of Left Hand (Describe Structures)	Using the photograph as a guide describe the vascular supply of the hand Prompt: Can you identify any of them	Ulnar Artery (21) forming the 5uperficial palmer arch (18) Radial Artery (17) forming deep palmar arch	Identify ulnar artery and superficial palmar arch Describe radial artery and deep palmar arch 3 to pass
	What other major structures can you identify	 12-Median N, 13-Med N – Palmer Br, 14-Med N – Recurrent Br, 15-Digital nerves, 22-Ulnar N 1- Abductor pollicis brevis, 2- Abductor digiti minimi, 3- Adductor pollicis, 8- Flexor digiti minimi brevis, 9- Flexor pollicis brevis, 11- Lumbrical, 16- Palm Br 6- FCR, 7- FCU, 10-Flex Retinacum, 20-Synvo Sheaths of flex tendons 	Bold and 6 others to pass

.

•

.

			ľ
Question 4 Model Male Pelvis (Urinary	Identify the structures that form the male genitourinary system in this model	Bladder, ureter, prostate gland, seminal gland, spermatic cord, testis, epididymis, penis	6 to pass
System/Testes)	What are the contents of the spermatic cord?	Ductus deferens, artery of ductus deferens, testicular artery, testicular vein → pampiniform plexus, lymphatics, autonomic nerves (sympathetic, parasympathetic)	Bold to pass
	Indicate on the model the location of the named parts of the male urethra	Intramural (base of bladder wall), prostatic (length of prostatic), membranous (short narrow section surrounded by ext sphincter) and spongy (length of corpus spongiosum)	3 of 4 to pass
Question 5 Discussion Circle of Willis	Draw a diagram depicting the Circle of Willis	Anterior communicating Anterior communicating Cerebral Anterior Cerebral Anterior Cerebral Anterial Cerebral Anterial Cerebral Anterial Cerebral Postorior communicating Postorior corebral Superior corebral Besitar Anterior corebellar Vertebral Anterior spinal	ID 3 paired arteries and ICA to pass
	Which arteries supply which parts of the brain?	(C) Inferior view Anterior cerebral a – Frontal lobe, medial and superior surface Middle cerebral a - Temporal lobe and lateral surface Posterior cerebral a - Occipital lobe, inferior surface Vertebro-Basilar	BOLD TO PASS

· · · · · · · · · · · ·

•

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Infarction	1. What is an infarct?	1. Area of Ischaemic necrosis caused by arterial or venous occlusion	Bold
LOA: 1	2. What mechanisms lead to infarction?	2 Arterial thrombosis, embolism , vasospasm, haemorrhage into plaque, extrinsic vascular compression (by tumour or oedema), torsion of vessel, traumatic rupture, entrapment in hernial sac, venous thrombosis	Bold + 2
	3. What factors determine the development of an infarct? Prompt- What influences whether an infarct will develop?	 3. Factors that determine development of an infarct Noture of vascular supply eg dual vs end arterial Rate of occlusion development – time for collaterals to develop Vulnerability to hypoxia of the tissue type Oxygen content of blood 	2 of 4
Question 2 Type 2 Hypersensitivity Reaction	1. What is Type 2 hypersensitivity?	1 Hypersensitivity caused by antibodies that react with antigens present on cell surfaces or in the extracellular matrix Antigens can be intrinsic to the membrane or matrix or extrinsic eg. Drug metabolite	Bold (concept)
L O A: 1	2. Describe the mechanisms involved giving examples for each mechanism.	2 a) Opsonisation & phagocytosis: IgG antibodies opsonise cells plus complement activation generates C3b & C4b recognized by phagocyte Fc & protein receptors resulting in phagocytosis & destruction of opsonised cells ADCC- cells coated with Abs killed by monos, neutros, eosinos and NK cells Examples: transfusion reaction, erythroblastosis fetalis, autoimmune haemolytic anaemia, agranulocytosis,, thrombocytopaenia, drug reactions when a drug acts as a hapten	Bold 2/3 With 1 example in each
		b) Complement and Fc receptor mediated inflammation: antibodies bind to fixed tissue such as basement membranes, extracellular matrix activates complement generate by-products particularly chemotactic agent C5a direct PMN migration and C3a and C5a = increase vascular permeability. PMNs activated by C3a and Fc receptors release of pro- inflammatory substances like prostaglandins, production of lysosomal enzymes, reactive O2 species Examples: glomerulonephritis, vascular rejection in organ grafts, vasculitis caused by ANCA, Goodpastures	
		c) Antibody mediated cellular dysfunction: antibodies directed against cell surface receptors impair or dysregulate function without causing cell injury or inflammation Examples: myasthenia gravis, Graves's disease, insulin resistant diabetes, pemphigus vulgaris, pernicious anaemia	

Question 3	1.What organisms cause community	1 Bacterial	Need
Community	acquired pneumonia?	• Strep pneumoniae	 Bacteria bold +2
Acquired		• Haemophilus influenza	Atypical 1
Pneumonia	PROMPTS:	Moraxella catarrhalis	
LOA:1	What organisms cause atypical	• Staph aureus	
	pneumonia?	• Legionella pneumophilia	
	What viruses may cause atypical	 Others eg klebsiella pneumonia, pseudomonas 	
	pneumonia?	Atypical pneumonia	
		Mycoplasma pneumonia	
		Chlamydiae spp	
		• Coxielle burnetti (Q fever)	
		• RSV, parainfluenza, influenza A+B, adeno virus. SARS virus	
	2. What conditions predispose to the	2 Extremes of age, malnutrition, alcoholism	4 broad categories
	development of pneumonia?	Chronic conditions CCF, COPD, DM	
		Neurological/swallowing disorders-aspiration pneum	
		Congenital or acquired immune deficiencies	
		Decreased or absent splenic function- splenectomy, sickle cell disease	
		Recent viral infection (esp staph). IVDU & staph	2/3 bold
	3. What are the potential	3 Abscess formation (type 3 pneumococcus, Kleb)	
	complications of pneumonia	Empyema	
	complications of pheemonia	Bacteraemic dissemination – endocarditis, pericarditis, meningitis, abscesses of kidney,	
	Prompt-Pathological sequelae	spleen, brain, septic arthritis	
Question 4	1. What are the organisms that cause	1. Bacterial - E.coli, Salmonella, Shigella, Campylobacter, C.difficile, Cholera, Yersinia,	Bold with 1 bact & 1
Infective	infectious enterocolitis?	Mycobacteria	viral
enterocolitis		Viral- Norovirus, Rotavirus, Adenovirus	3 examples total
LOA: 2		Parasitic- Giardia, Amoeba, Cryptosporidium, other (nematodes, cestodes, trematodes)	o examples coult
	2. What is pseudomembranous	2. Colitis caused by overgrowth of C. difficile (also Salmonella, C.perfringens typeA,	
	colitis?	S.aureus)	Bold
		Associated with antibiotic use	
		Forms a pseudomembrane made up of adherent layer of inflammatory cells and debris	
	3. What are the risk factors for	3. Risk factors- advanced age, hospitalisation, antibiotic treatment	
	development of pseudomembranous		
	colitis?		2/3 Bold
	What are the clinical features of	30% hospitalised patients colonised, but most aymptomatic	
	pseudomembranous colitis?	Fever, leucocytosis, abdominal pain, cramps, hypoalbuminaemia, watery diarrhoea,	
		dehydration, rarely gross bloody diarrhoea	Bold
		Diagnosis-usually detection of toxin	
		Treat with metronidazole, vancomycin	1

Question 5	1. What are the causes of gout?	Hyperuricaemia:	Hyperuricaemia + 1
		1. Primary Gout (90%; often idiopathic);	Primary and 1
Gout		Overproduction (diet, unknown enzyme defects);	Secondary cause
		Reduced filtration/excretion with normal production.	Or 1 overproduction
LOA: 2		2. Secondary Gout (10%; known cause, secondary effect is gout):	and 1 decreased
		Leukaemias/tumor lysis/psoriasis, inborn errors of metabolism (overproduction with increased excretion); Chronic renal disease (reduced excretion).	excretion
	2. Describe the pathogenesis of acute gouty arthritis.	1. Hyperuricaemia 2. Breelpitation of wate envite in the left (in supervision (cost)(and)	Bold to pass
	Prompt- What are the steps	2. Precipitation of urate crystals into joints (in synovium / cartilage) 3. Release of crystals into synovial fluid (?trauma)	
	involved?	4. Inflammatory response initiated – crystals phagocytosed by macrophages and	
		neutrophils; release of inflammatory mediators by macrophages (interleukins, cytokines	
		(IL-1B)); resulting in further neutrophil chemotaxis; neutrophils also release inflammatory	
		mediators (free radicals, leukotrienes (LT B4), lysosomal enzymes) – acute arthritis.	
	3. (only if needed) What factors	Age & duration of hyperuricaemia; genetic predisposition/etoh/obesity/drugs e.g.	
	contribute to the conversion of	thiazides/lead toxicity	
	asymptomatic hyperuricaemia into		
	gout		

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	1. What are the mechanisms	1. hydrostatic pressure – impaired venous return, eg CHF, Constrictive pericarditis, ascites, venous	3 out of 5 bold,
Oedema	of oedema formation?	obstruction(internal/external+immobility), arteriolar dilatation eg heat	example from
formation		Decr plasm oncotic pressure (hypoproteinaemia) - nephrotic syndrome, ,malnutrition, protein losing	each
LOA: 1		enteropathy.	
		Lymphatic obstruction - inflammatory, neoplastic, post-surgery/radiation	
		Sodium and water retentionXS salt with renal insufficiency, incr renin-angiotensin-aldosterone	
		secretion	
		Inflammation –acute/chronic, anglogenesis	
	2. What is the pathogenesis	2. Decreased cardiac output, decr renal perfusion, secondary aldosteronism, Incr blood volume, incr	
	of cardiogenic oedema?	venous pressure	At least 3 steps.
Question 2	1. How can Hepatitis B	1. Vertical – perinatal during childbirth	3/5
lep B	infection be transmitted?	Horizontal – skin or mucosal breaches	
.OA: 2		- intercourse	
		- shared needles / syringes in IVDU	
		- blood transfusion	
	2. What are the potential	2. Recovery >90%	Bold to pass
	outcomes following ACUTE	Fuiminant hepatitis necrosis <0.5%	
	Hepatitis B infection?	Chronic Hepatitis <5%	
		- cirrhosis 12-20% +/- hepatocellular Ca	
		- healthy carrier state	
		 non progressive chronic hepatitis <2% 	
	3. What are the serum	3. HBeAg, HBsAg	
	markers of ACUTE infection	HBV-DNA, Anti-HBc IgM	2/3 Bold
	with Hepatitis B?	Anti-HBe, (not Anti-HBs)	
	Prompt: What antigens and		
	antibodies are present		
_	during acute hepatitis B?		

Question 3	1. In myocardial infarction,	1. Sudden change in atheromatous plaque haemorrhage, erosion, ulceration, rupture, fissure	Bold to pass
IHD	what sequence of events	Platelet adherence, activation & aggregation leading to microthromi	
LOA: 1	leads to acute coronary	Vasospasm from plt released mediators	
	artery occlusion?	Activation of coagulation pathway causing thrombus	
	Prompt- pathological events	Vessel occlusion	
	2. Describe the time course	2. Reversible	Bold to pass with
	of myocardial injury after	cessation of aerobic metabolism seconds	minutes to hours
	acute coronary artery	decreased ATP production	concept
	occlusion.	lactic acid production (noxious metabolites)	
		 loss of contractility, acute heart failure 1 min 	
	Prompt- What happens to	 ultrastructural changes – myofibrillar relaxation, glycogen depletion, cell & mitochondrial swelling 	
	the myocardial tissue over	few minutes	1
	time?	ATP depletion up to 40 min	
		Irreversible	
		• myocyte injury – defects in sarcolemmal membrane and cell leakage 20 - 40min	
		 initially subendocardial then transmural myocyte death 	
		microvascular injury 1 hour	
		coagulation necrosis > 2 hours (more protracted if collaterals)	
Question 4	1. What are the pathological	1. Increase airway responsiveness to variety of stimuli; episodic bronchoconstriction; bronchial wall	Bold
Asthma	features of asthma?	inflammation; incr mucus	
LOA: 1	2. Asthma may be	2. Atopic- IgE mediated type1 hypersensitivity (allergen sensitisation); environmental allergen triggers	Bold. One trigger
	categorized as atopic or	e.g. dust, pollen, dander e.g. house dust mite, foods. Family Hx common; skin test positive to allergen;	for each
	non-atopic. What are the	RAST shows allergen sensitivity	
	characteristics of each of		
	these types?	Non-Atopic- hyperirritability of bronchial tree-no allergen sensitisation, skin tests usual negative; family	
	Prompt - What is the	Hx uncommon; triggers-resp infection secondary viruses common; inhaled air pollutants may contribute	
	underlying mechanism of	(SO2, ozone, NO2)	
	atopic asthma? What are		
	some of the triggers?		
	3. In atopic asthma, what	3. Allergen exposure=> igE.	Bold plus concept
	happens in the early-phase	 Reexposure=> Mast cell degranulation with release of cytokines/mediators 	
	reaction?	 =>bronchoconstriction (via subepithelial vagal/parasympathetic receptors), 	
		 mucus production, 	
		 vasodllation with increased vasc permeability 	

Question 5 Obstructive uropathy LOA: 2	1. What are the causes of urinary tract obstruction?	 Congenital- urethral valves & strictures; bladder neck obstruction; ureteropelvic narrowing; reflux Calcull; Prostatic hypertrophy Tumors- prostate; bladder; cervix/uterus; other Inflammation- prostatitis; urethritis; ureteritis; retroperitoneal fibrosis Sloughed papillae, clots; Pregnancy; Uterine prolapse; cystocele Functional- neurogenic (spinal cord/diabetic); dysfunctional; ureter or bladder 	Bold plus one other.
	2. What are the clinical features of acute obstruction?	2. Pain due to distension or Sx of underlying process e.g. renal colic, LUTS in prostatic disease asymptomatic (in Unilateral complete or partial) Polyuria and nocturia. Calculi, HT, distal tubular acidosis- (In Bilateral partial) oligo/anurla, hyperkalaemia, incr urea & creat- (in Complete bilateral)	Bołd
	3. What are the possible clinical sequelae of urinary tract obstruction?	3. Infection Stone formation Atrophy/hydronephrosis/obstructive uropathy (if chronic)- ≈> renal failure Complications of renal failure.	3/5

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	1. In acute inflammation what	1. Changes in blood flow: (transient constriction), vasodilation (NO mediated) lead to increased	3/4 Bold
	changes occur in blood	flow	
LOA: 1	vessels?	Increased permeability, loss of protein-rich fluid	
Vascular changes of		Fluid loss & dilation lead to stasis/congestion	
acute inflammation	Prompt: What happens next?	 Leukocytes accum at vasc endothelium, endothelium expresses adhesion molecs, leuks adhere & migrate out 	
	2. What are the mechanisms	2. Chem mediated endothelial cell contraction (caused by eg histamine, LKT, sub P)	2/3 must include
	for the increased vascular	Endothelial injury direct/microbes/leuks eg burns	bold
	permeability seen in acute	Increased transcytosis of fluids/proteins via channels of connected vesicles/vacuoles	
	inflammation?	(vesiculovacuolar organelles) stim by factors eg VEGF	
Question 2	1. What are the major classes	1. B lymphocytes	B&T
	of lymphocytes?	CD4+ helper T- Lymphocytes	
LOA: 2		CD8+ Cytotoxic T Lymphocytes	
The normal immune response		Natural Killer (NK) Cells	
	2. What is the role of each	2. Adaptive immunity circulate widely & rec-circulate esp Ts - respond to foreign substances/Ag.	8-Humoral plus
	class of lymphocytes in the	Can become effector or memory cells	concept
	normal immune system?	B cells: recognise Ag via memb lgM/lgD –plasma cell -secretes lg/Ab = humoral immunity. (B cells also have compl R, FcR, CD40)	
	Prompt- What is the role of B-	T cells: Ag specific T cell R - binds to Ag on cells (on MHC molecules on APCs) – activates cell	T-Cell mediated
	cells?	depending on type = cell-mediated immunity	plus concept
	What is the role of T-Cells?	CD4/T helper recog class II MHC bound Ag: cytokine release – leads to macrophage activation, inflam, B cell stimulation	
		CD8/ T cytotoxic recog class I MHC bound Ag: infected cell destruction	
		NK Cells- kill inf&tumor cells. No prior exp needed. Healthy cell Class I MHC=>inhibits NK. Can secrete cytokines=>inflame	
Question 3	1. From where do pulmonary	1/95% arise in the deep veins of the leg – pass up to R side of heart and into pulm vasculature.	Bold to pass (
Pulmonary Embolism	thromboemboli originate?	Size determines where they lodge.	exact % not
LOA: 1			required but
	2. What are some risk factors	2. Primary (genetic factors) factor 5 Leiden, protein C+S deficiency, antiphospholipid syn	rough idea)
	for thrombus formation?	Secondary- (acquired) - stasis/immobilisation, long haul flights, active malignancy,	
		trauma/burns/surgery, pregnancy, OCP. Indwelling catheters	At least one
			example from
	3. What are the clinical effects	3. most clinically silent 60-80%,	Primary, and 2
	of pulmonary thromboemboli?	Cough, SOB, fever, CP, haemoptysis, tachy-cardia/pnoea through to sudden death,cor pulmonale,CVS collapse	from secondary
		Pulm haemorrhage / infarction, over time multiple emboli may cause pulm hypertension & cor pulmonale	5 features

Question 4	1/What are the causes of	1/ Incr resistance to portal blood flow	Bold.
Portal Hypertension	portal hypertension?	Prehepatic – portal vein thrombosis or narrowing	One from each
LOA: 2		Hepatic ~ (most important)- cirrhosis, massive fatty change, schistosomiasis, granulomatous	other group
	May need to prompt for	disease eg sarcoid/Tb	
	examples/classification.	Post hepatic - severe RHF, constrictive pericarditis hepatic vein occlusion	
	2/What are the clinical	2/ Ascites with potential for infection	2/4 bold
	consequences of portal hypertension?	Porto-systemic shunts : varices, haemorrhoids, spider naevi Congestive splenomegaly – thrombocytopaenia/pancytopaenia Hepatic encephalopathy	
	3/What mechanisms are Involved in the formation of Ascites?	3/ Sinusoidal hypertension - Starling forces : Incr pressure and decr albumin Incr formation of hepatic lymph - exceeds capacity of thoracic duct- percolates into peritoneum Splanchnic vasodilation with dec BP=> Renal retention of sodium and water due to secondary hyperaldosteronism	2/3 concepts
Question 5 Traumatic CNS Injury LOA: 1	1/ What types of intracranial bleeding can be seen in a patient with a head injury?	1/ Extradural Subdural Subarachnold (including intraventricular) Intra-parenchymal	3 of 4
	2/What sequence of events occur in an extradural haemorrhage	2/Dural artery (eg. middle meningeal) tear, usually associated with a skull fracture Strips off the dura from the skull May be a lucid period before ALOC	Must get bold
	3/Define concussion and what are Its clinical features?	3/Altered consciousness secondary to a head injury Transient neurological dysfunction Transient resp arrest Transient loss of reflexes	Must get bold
		(pathogenesis is unclear, may be dysregulation of RAS)	
		Features inc headache, amnesia, N&V, Concentration and Memory issues, perseveration, irritability, behaviour/personality changes, dexterity loss, neuropsychiatric syndromes	3 features

ACEM PRIMARY 2013/1 Pharmacology VIVA Morning Session 1

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: PHARMACOKINETICS LOA: 2	Describe the pharmacokinetic changes that occur in the elderly	 Absorption: nutritional deficits; delayed gastric emptying (diabetics); co ingested agents (laxatives, antacids) Distribution: ↑ body fat, alpha-acid glycoprotein (bases); ↓ lean body mass, body water, albumin (weak acids); Metabolism: ↓ phase 1 reactions P450; ↓ liver blood flow, liver disease, CCF, nutritional defic Elimination: ↓ renal CL; renal disease; ↓ resp capacity; resp disease 	Hepatic metabolism↓ Renai clearance↓ + 1 other
Question 2 VERAPAMIL LOA: 1	Describe the effects of verapamil on the heart.	Binds to al receptor L-type Ca channel Blocks Ca influx Reduced contractility CO, O2 demand Reduced impulse generation/conduction AV node Reduced coronary artery spasm	Bolded
	What are the indications for verapamil?	Angina; hypertension; atrial arrhythmias migraine	2 bolded
	Name some clinical adverse effects	Extensions of therapeutic action (exacerbated by β blockers) Bradycardia; AV block; CCF; hypotension Other Constipation; peripheral oedema; dizziness; flushing; nausea	2 bolded

Question 3	What is the mechanism of action of	Inhibit bacterial cell wall synthesis , cell division	Bolded to pass
CEPHALOSPORINS	cephalosporins?	and growth (similar to penicillins)	
LOA:1		Bacteriocidal	
		Work best in rapidly dividing cells	
	How does the spectrum of	<u>1st generation</u> : very active against GPC, Ecoli,	Understand the principles of
	microbiological activity differ between	K.pneumoniae, proteus ok but Pseudomonas not.	the 1 st , 2 nd and 3 rd generations
	the cephalosporin generations?	Anaerobic cocci sensitive	
		2 nd generation: active against those by 1 st	
		generation but added GN coverage -klebsiella Some anaerobe cover	
		NO Pseudomonas	
		3 rd generation expanded GN coverage and cross	
		BBB. Less active re staph . Work against B-	
		lactamase Haemophilis and Neissria.	
		Ceftazadime works re Pseudomonas	
		4 th generation more resistant to B- lactamases,	
		extended coverage against enteric GNR-	
		pseudomonas, enterobacteriaceae, S pneumonia,	
		S aureus, Haemophilis and Neisseria. Cross BBB	
Question 4	What are the indications for ketamine	Induction agent, procedural sedation, analgesia	2 of bolded
KETAMINE			
LOA: 1	What are the routes of administration?	IV, IM, IN, epidural, PO, PR, SC	IV, IM + 1 other
	What is the IV dose used for induction of	1-2 mg/kg	Bolded
	general anaesthesia?		
	Name some of the adverse effects.	Hypersalivation, larygospasm(peds),	Emergence reactions + 2 other
		vomiting(recovery phase), emergence reactions,	
		Hypertension, tachycardia, raised ICP	

Question 5	What is the mechanism of action of N-	Paracetamol metabolism by hepatic	Bold to pass
N-ACETYLCYSTEINE	acetylcysteine in paracetamol overdose?	glucuronidation/sulphation is saturated resulting	
LOA: 2		in increased metabolism via cytochrome p450	
		system to form N –acetylbenzoquinoneimine	
		(NAPQI), a toxic intermediate. Elevated NAPQI	
		production leads to depletion of hepatic	
		glutathione stores, resulting in hepatotoxicity.	
		NAC prevents paracetamol induced hepatotoxicy	
		by 4 possible mechanisms:	
		1) Increased glutathione	
		availability/Sulfhydryl donor	
		2) Direct binding to NAPQI	
		3) Provision of inorganic sulphate	
		4) Reduction of NAPQI back to paracetamol	
	Name an adverse effects of N-	Mild anaphylactoid reactions(15-20%)- mild	Bold or description
	acetylcysteine.	flushing, rash and angio-oedema.	

ACEM PRIMARY 2013/1 Pharmacology VIVA Afternoon

Afternoon Session 2 Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: POTENCY & EFFICACY LOA: 1	Define "potency".	Potency refers to the affinity or attraction between an agonist and its receptor. It reflects the dose axis of dose response curves. A measure of drug potency is the EC_{50} – the conc'n/dose req'd to produce 50% of maximal response.	Be able to explain potency and efficacy
	How is this different to Efficacy?	Efficacy is the maximal response that a drug (agonist) can produce (E _{max}) when all receptors are occupied, irrespective of the concentration required to produce that response. Efficacy determines a drugs clinical effectiveness and reflects the response axis	
	Draw a concentration-response curve showing 2 drugs with the same potency but different efficacy.	The cits the response axis	
		similar potencies; X and Y are more potent than Z	

Question 2 PROPRANOLOL LOA: 1	Describe the pharmacodynamics of propranolol.	B antagonist; competitive; non-selective CV ↓BP if high -ve inotrope –ve chronotrope ↑PR interval ↓renin release Resp bronchospasm Eye ↓pressure (↓humour production) Metabolic ↓glycogenolysis ↑VLDL ↓HDL	2 CV + 1 other
	What are the potential adverse effects?	Bradycardia; ↑CCF; ↑PVD ↓hypoglycaemia response Bronchospasm Sedation/depression Abrupt withdrawal effects Exacerbate Ca channel blocker effects	Bradycardia, bronchospasm and 1 other
Question 3 TRIMETHOPRIM LOA: 2	Describe the mechanism of action of trimethoprim.	Selectively inhibits bacterial enzyme (dihydrofolic acid reductase) which is required in the conversion of dihydrofolic acid to tetrafolic acid. Hence inhibits purine and DNA synthesis. Less efficient in inhibiting mammalian dihydrofolic acid reductase	Inhibits bacterial enzyme Resulting in Inhibition DNA synthesis
	What is the rationale for combining trimethoprim with sulphonamides?	Enhanced effect - sulphonamides inhibit sequential steps (acts step before triprim). Inhibits dihydropteroate synthase involved in conversion PABA to dihydrofolic acid As sequential steps are blocked in folate synthesis usually bacteriocidial c.f bacteriostatic of 1 alone.	Bold

Question 4 MIDAZOLAM LOA: 1	What are the clinical indications for the use of midazolam?	Anxiolysis, sedation, anticonvulsant, antiemetic	Bold to pass
	What are the advantages and disadvantages of the various routes of administration?	PO, IV, IM, PR, IN, Buccal	Reasonable discussion of IV + 1 other
	What are the adverse effects?	Excess sedation, respiratory depression, decreased motor skills, impaired judgment, hypotension + occasionally rashes	Bold to pass
Question 5 OCTREOTIDE LOA: 2	What are the therapeutic uses for octreotide?	Control of bleeding gastro-oesophageal varices, sulphonylurea induced hypoglycaemia, pituitary and carcinoid tumors.	Bold to pass
	What is the mechanism of action of octreotide in acute variceal bleeding?	Reduces splanchnic blood flow/portal venous pressure. Exact mechanism of how this occurs is not known.	Bold to pass
	How is it administered in acute variceal bleeding?	IV bolus and infusion (50mcg bolus then 25- 50mcg/hr) or 5C	Bold to pass
	Why is an infusion required?	Short half-life	Bold to pass

ACEM PRIMARY 2013/1 Pharmacology VIVA Morning Session 3

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Bioavailability LOA: 2	What is bioavailability?	Fraction of unchanged drug reaching the systemic circulation following administration by any route.	Bold to pass
	What factors limit drug bioavailability following oral administration?	 Extent of absorption: a) Property of the drug eg hydrophyllic vs lipophyllic b) Gut factors - reverse transporter pumps p-glycoprotein &gut wall metabolism First pass elimination- metabolism by liver before reaching systemic circulation or small effect biliary excretion 	Bold to pass
	How can you overcome the effects of high first pass metabolism?	Change route of administration to sublingual, transdermal eg GTN, rectal, inhalation, IV, IM Increase dose Use pro-drugs	Bold
Question 2 GLYCERYL TRINITRATE (GTN)	How does Glyceryl Trinitrate (GTN) exert its effect on smooth muscle?	Nitrate→Nitric Oxide→↑cGMP→ relaxation→vasodilation Also involves Prostaglandin E or prostacyclin	Nitric Oxide , cGMP/second messenger, vasodilation
LOA: 1	Describe the Pharmacokinetics of GTN	Low Bioavail (<10-20%) Sublingual, transdermal or IV	Low Bioavailabilty Short halflife
	Prompt: How is GTN given?	S/L: onset 1-3min, lasting 10-30min Liver metabolism and excreted by kidney Tachyphylaxis with continuous use	

Question 3 NORFLOXACIN LOA: 1	Descríbe the mechanism of action of norfloxacin.	 Fluoroquinolone. Bacteriocidal. a. Inhibition topoisomerase II /DNA Gyrase → interferes with relaxation of supercoiled DNA, required for normal transcription and replication b. Inhibition topoisomerase IV → interferes with separation of replicated chromosomal DNA 	Bold to pass
	Describe the anti-bacterial activity of norfloxacin	Gram negative bacteria Organisms of atypical pneumonia: mycoplasma, chlamydia Limited gram positive activity	Bold to pass
	How does the anti-bacterial activity of norfloxacin compare to that of ciprofloxacin?	Ciprofloxacin has greater activity (4-8 times lower MICs) against gram negatives and much greater activity against gram positives	Bold to pass
Question 4 PROPOFOL LOA: 1	What are the indications for the use of Propofol? What properties of Propofol make it suitable for procedural sedation?	Induction agent, maintenance of anaesthesia procedural sedation Rapid onset and offset	2 bold to pass
	What are adverse effects of Propofol?	Localised pain with bolus administration. Dose related depression of respiratory drive (central effect) and apnoea. Muscle movements, hypotonus and rarely tremor. Hypotension (reduced arterial resistance venodilation and negative inotropism).	Bold to pass

Question 5 NALOXONE LOA: 2	What is the mechanism of action of Naloxone?	Pure opioid antagonist binds to μ-opioid binding sites.	Bold to pass
	What is the time to onset and duration of action when administered intravenously?	Rapid onset 1-3 minutes Duration 1-2 hours	Bold to pass
	What problems may be associated with naloxone administration?	Oploid withdrawal Resedation	Bold to pass
	How can these problems be minimised or avoided?	Smaller/titrated doses Infusion Route of administration	Bold to pass

		orning Session 1 Candidate Number:	AGREED MARK:
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: LOCAL FLOW REGULATION LOA: 2	 a. Describe the autoregulation of tissue blood flow. Prompt: what are the main features of autoregulation 	Capacity of tissues to regulate their own blood flow Tissue blood flow remains relatively constant despite moderate changes in perfusion pressure through alterations in vascular resistance.	Three main features to pass
	b. How would this apply to autoregulation of cerebral blood flow?	Constant flow over arterial pressure range 65-140 mmHg. Sympathetic stimulation prolongs the plateau.	Bold including approximate range
	c. What are the proposed mechanisms involved in autoregulation?	Myogenic: intrinsic contractile response of smooth muscle to stretch. Metabolic: production of vasodilator metabolites by	Both mechanisms & 2/5 metabolites
	Prompt: What are some important metabolic changes that cause vasodilatation	active tissue. Accumulation assoc. with decreased flow leads to vasodilation. Examples dec pO2, acidosis, high K, lactate, pCO2(brain and skin), local temp, adenosine (heart)	
Question 2	a. Describe the factors that determine the	Airway resistance	Need 3 factors to pass
Pulmonary resistance & Compliance LOA: 1	airway resistance in the lung. Prompt: when would airway resistance increase?	 Decreases with stimulation of β-adrenergic receptors causing bronchodilatation. Increases with parasympathetic nerve stimulation causing bronchoconstriction. Increases with histamine Increases when Lung volume reduces 	Poiseuille's Law: Resistance = 8 x viscosity x length / radius ⁴ x π
	b. With regard to lung <u>compliance</u> give examples of diseases that reduce compliance. Prompt define compliance: volume change/unit pressure.	 Increases when pCO2 decrease Increases with increase density & viscosity of gas b. Pulmonary fibrosis, pulmonary oedema, pulmonary haemorrhage, atelectasis, loss of surfactants such as respiratory distress syndrome. 	Need 3 examples (may be others not listed that are acceptable)
Question 3 Renal H+ regulation LOA: 1	Describe the renal response to metabolic acidosis Prompts: "What prevents H+ secretion stopping when a pH of 4.5 is reached?" "What substances act as buffers in the urine?"	 Renal compensation aims to normalise blood pH by reabsorbing all filtered HCO3⁻, and generating new HCO3⁻ by titration of filtered acid. Anions that replace HCO3⁻ are filtered at the glomerulus along with corresponding cations Renal tubule cells secrete H+ into tubular fluid in exchange for Na⁺ and HCO3⁻ Buffering in the urine gives greater capacity to this system (otherwise limiting pH of 4.5 would stop further H⁺ elimination) Urinary buffers include HCO3⁻, PO4⁻, and NH3 	Pass criteria bold Buffers need bold and 1 other

Question 4	a. What are the physiological effects of	1. Essential for survival stress response	Must get bold, at least 2
Glucocorticoids	glucocorticoids?	2. 'Permissive action' for catecholamine effects:	metabolic + 1 other
LOA: 1		pressor/ vascular reactivity, bronchodilation,	
	Prompt: "Can you expand on non-vascular	calorigenesis, lipolysis	
	effects"	3. Metabolic: protein catabolism, hepatic glycogenesis	
		& gluconeogenesis. Rise in plasma glucose + peripheral	
		anti-insulin effect. Increase plasma lipids.	
		4. Permit 'free water' excretion: plasma tonicity	
		5. Immunological: Decrease inflamm + allergic	
		responses. Reduced lymphocytic activity, lymph tissue,	
		cytokines	
		6. Haematological: increased neutrophils, RBC,	
		platelets. Decreased basophils, eosinophils	
		7. Mental: EEG slowing, personality changes	
	b. How is glucocorticoid secretion	Released adrenal cortex in response to ACTH from ant	Must get bold.
	regulated?	pituitary. ACTH release driven by CRH from	
		hypothalamus (response to low corticoid level or stress	
) Glucocorticoid -ve feedback on hypothal/ pit to	
		reduce ACTH secretion	
Question 5	a. What are the two major mechanisms of	Conductive deafness - due to impaired sound	Bold
Hearing	deafness?	transmission in external or middle ear, affects all	Explain both and 2 examples of
LOA: 2		frequencies.	each to pass
		Sensorineural deafness – due to loss of cochlear hair	
		cells (commonest), or problems with CN VIII or within	
	b. Explain these causes in physiological	central auditory pathways, affects some frequencies.	
	terms and give examples.	Examples	
		Conductive - blockage of extl canals (e.g. wax, FBs),	
		otitis ext or media, perforated eardrum, osteosclerosis	
		Sensorineural – degeneration (presbycusis), damage	
		to outer hair cells (prolonged noise exposure),	
		aminoglycoside antibiotics, CN VIII tumours or	
		cerebellopontine angle, CVA in medulla.	
	Bonus: How can one differentiate between	Weber/ Rinne : 256 tuning fork	Bonus if have time
	the two forms using a tuning fork?		L

ΤΟΡΙΟ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: CORONARY BLOOD FLOW LOA: 1	 a. Describe coronary arterial blood flow during the cardiac cycle. Prompts: How is flow different in the left and right coronary arteries during systole and diastole? Which part of the heart is most at risk due to low coronary flow? 	Greater flow in diastole c/w systole in L coronary due to higher pressures required in the LV to overcome aortic pressure in systole. LV subendocardium most vulnerable as only gets diastolic flow. R coronary flow throughout systole and diastole due to lower RV pressures	Three main features to pass
	b. What factors can decrease coronary artery blood flow?	 1.Physiologic: Tachycardia: shorter diastole; reduced L coronary flow in particular 2.Pathologic: AS: Increased LV pressures req. to overcome stenosis & decreased flow; Vasospasm; Coronary artery disease; Heart failure: increased venous pressure; reduced coronary perfusion press. 	Tachycardia and 2 pathological
Question 2 O2 transport LOA: 1	a. Describe how oxygen is carried in the blood.	Dissolved : amount dissolved proportional to partial pressure (Henry's law) – 0.3 ml O ₂ /100 ml blood/100 mm Hg PO ₂ Combine with haemoglobin : 20.8 mg/100 ml blood.	Need bold
	b. Please draw the Oxyhaemoglobin dissociation curve.	See diagram: draw graph to pass, 3 key points (2/3 accurate): examples P50 & 90/60 and 1 other.	Portial prosure of oxygen (mm Hg) Sources Lanctay WG) Automate Microbury, 7h Educon: Infact/mm - coast-time habits come an ex- Openion & The resource and come an ex-
	c. Describe factors that can affect the oxygen dissociation curve.	Shift to right by inc H ⁺ conc, pCO ₂ , temp, 2,3 diphosphoglycerate to unload oxygen. Shift to left with the opposite changes.	2 factors
Question 3 Renal Tubular Function LOA:	a. How do the ascending and descending limbs of the Loop of Henle differ in function?	Thin descending limb water permeable (aquaporins) and tubular fluid becomes hypertonic. Thick ascending limb impermeable to water, and Na ⁺ , K ⁺ ,CJ ⁻ actively transported out, so fluid ends up more hypotonic. K ⁺ diffuses back passively	Bold, Illustrate clear difference
	b. Describe the process of tubuloglomerular feedback in the nephron.	This process aims to maintain the constancy of the load delivered to the distal tubule. The macula densa in the ascending limb of the loop of Henle senses the rate of flow and feeds back to either increase or decrease the rate of filtration in the glomerulus	Correct concept

Question 4 Anterior Pituitary Hormones including	a. What hormones are secreted by the anterior pituitary?	TSH; ACTH; Growth hormone; LH; FSH; Prolactin	Bold + 2 other
insufficiency LOA: 1	b. What are the clinical effects of anterior pituitary insufficiency?	 Adrenal cortical atrophy: glucocorticoid + sex hormone levels fall. Mineralocort secretion maintained: salt loss/ hypovolaemic shock does not occur. But unable to mount stress response. Hypothyroidism; 3.Growth inhibition Gonadal atrophy, sexual cycles cease, loss of some secondary sex characteristics Tendency to hypoglycaemia (increased insulin sensitivity) 	Pass: Adrenocortical effects + 2 other
Question 5 GIT handling of water and electrolytes LOA: 1	a. Explain the mechanisms of absorption of water and electrolytes in the gastrointestinal tract. Prompt: How is sodium absorbed?	Absorption: After meals – fluid reuptake due to coupled transport of nutrients, e.g. glucose and Na (Water reabsorbed 8800 ml) Between meals – NaCl enters across the apical membrane via the coupled activity of a Na/H exchanger and a Cl/HCO3 exchanger (electroneutral mechanism in small intestine & colon). In distal colon, Na enters the epithelial cell via epithelial Na Channels (electrogenic mechanism).	Bold and 1 mechanism of Na absorption somewhere
	b. Explain the mechanisms of water and electrolyte secretion in the gastrointestinal tract. Prompt: How is chloride secreted?	Secretion: Cl secretion occurs continuously in the small intestine & colon. Cl uptake occurs via Na/K/2Cl co-transporter and is secreted into the lumen via Cl channels (CFTR = cystic fibrosis transmembrane conductance regulator). Water endogenous secretions 7000 ml	Bold and 1 mechanism of Cl secretion somewhere Note: Water balance Input: Ingested 2000 ml & Endogenous secretions 7000 ml; Output: Reabsorbed 8800 ml; Balance in stools 200 ml

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: LOA: 1 Cardiac Muscle Action Potential	a. Please draw and explain the action potential in a cardiac pacemaker cell. Prompt: "What electrolytes are responsible for each phase of the action potential?"	Pre-potential is initially due to a decrease in K ⁺ efflux, then completed by Ca ²⁺ influx through CaT channels The action potential is due to influx of Ca ²⁺ via CaL channels Repolarisation is due to K ⁺ efflux	Must have the shape to pass and know the ion fluxes.
(- incl difference to pacemaker action potential)		$\begin{array}{c} 0 \\ Action \\ potential \\ -40 \\ -60 \end{array}$ $\begin{array}{c} -40 \\ Prepatential \\ Prepatential \\ decay \end{array}$	
	b. Describe the major differences between a ventricular muscle action potential and a pacemaker cell potential.	Time Greater negative RMP. Fast depolarisation via Na ⁺ versus slower Ca ²⁺ dependent. No prepotential and no automaticity.	Clear contrast to the above graph, No prepotential as no leaking Ca ²⁺ and plateau due to Ca ²⁺ .
Question 2 LOA: 1 Lung volumes and capacity	a. Please describe the components of total lung capacity? Prompt: What individual volumes or capacities are described in relation to the total lung capacity or volume.	Plateau phase.Tidal volume: the volume of gas moved in and out of the lung during normal breathing (500ml)Vital capacity: the exhaled gas volume after a maximal inspiration (5.5-6 litres)Residual volume: the volume of gas remaining in the lung after maximal expiration (1.5-2 litres)Functional residual capacity: the volume of the gas in the lung after a normal expiration (3 litres)	Three of four volumes
	b. Name a method to measure each of these?	Spirometer can measure tidal volume and vital capacity Total lung capacity, functional residual capacity and residual volume may be measures by helium dilution or the body plethysmograph	Bold

Question 3 Renin- Angiotensin System LOA: 1	a. What are the actions of the renin- angiotensin system?	Mediated through AT II; - arteriolar constriction with rise in SBP and DBP; increases secretion of aldosterone; facilitates release of NAd acting on post- ganglionic neurones; positive feedback loop on brain by decreasing sens. to baroreflex and increase effect of AT II, and secretion of vasopressin and ACTH	Bold
	b. What factors affect renin secretion?	Stimulation: sympathetic activity via renal nerves; increased circ. Catecholamines; prostaglandins Inhibition: - increased Na and Cl reabsorption across macula densa; - increased afferent arteriolar pressure; AT II; vasopressin	Bold
Question 4 LOA: 1 Vasopressin (hypothalamus)	a. Describe the feedback loop that ensures homeostasis of blood osmolality	increase blood osmolality triggers: thirst mechanism; renal conservation of water - via the release of vasopressin from the posterior pituitary Both outcomes decrease blood osmolality back to normal. Feedback terminates hypothalamic signalling	Bold to pass
	b. Name the stimuli that affect vasopressin secretion	Increase: increased osmotic pressure plasma; decreased ECF volume; pain emotion stress exercise; nausea vomiting; standing; drugs (carbamezepine, clofibrate); angiotensin II Decrease: decreased osmotic pressure plasma; increased ECF; Alcohol	Bold & 2
Question 5 LOA: 1 Exocrine pancreas	 a. List the enzymes secreted from the exocrine pancreas. b. Give at least 3 examples of substrates that these enzymes work on. 	Trypsin – proteins, polypeptides Chymotrypsins- proteins, polypeptides Elastase –elastin and some proteins Carboxypeptidase A - proteins, polypeptides Carboxypeptidase B - proteins, polypeptides Colipase –fat droplets Pancreatic Lipase -triglycerides Bile salt –acid lipase -cholesterol esters Cholesterol ester hydrolase-cholesterol esters Pancreatic alpha amylase -starch Ribonuclease -RNA Deoxyribonuclease -DNA Phospholipase A2 -phospholipds	Lipase and at least 2 examples & matched substrates

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Anatomy: Photo - Abdominal Aorta / posterior abdominal wall	 Identify and name the blood vessels in this image. Identify the ureters and describe their course 	Aorta (1), common iliac arteries (3), femoral artery (9). IVC (23), Common iliac veins (4), External iliac arteries (7), External iliac veins (8), Internal iliac arteries (25), IMA (22), Femoral vein (12), lumbar artery (13), testicular vessels (39) Ureters (40) Origin at the renal hilum (PUJ); run inferiorly lying across the psoas (32); Lie medially to tips of the lumbar tps (on xray); Cross over the pelvic brim; Cross anteriorly to the bifurcation of the common iliac artery; lie on the lateral wall of the pelvis, travels medially to bladder;	4 in bold PLUS 3 others to pass Correctly identifies ureters PLUS 3 points
	3. What are the narrowest points of the ureters?	short intramural path at VUJ Narrowings at the PUJ, VUJ, & pelvic brim	2 of 3 points
Pathology: Abdominal Aortic Aneurysms	 What are the risk factors for development of abdominal aortic aneurysms? 	Male; Smoking; Age > 60; Family History; Connective tissue disease (eg. Ehlers Danlos); Vasculitis; Hypertension, Diabetes; Atherosclerosis	5 to pass
	 Describe the pathogenesis of AAA formation 	Atherosclerotic plaque in intima compresses media with degeneration and weakness of wall and cystic medial degradation Local inflammation Proteolytic enzymes with collagen degradation -role of matrix metalloproteinases (MMP). Loss of vascular smooth muscle cells. Inappropriate Synthesis of non-elastic ECM	2 of 3 bold to pass
	3. What are the clinical consequences of an AAA?	Rupture: increase with diameter (higher if >5cm) & can beretroperitoneal OR intra peritoneal with rapid fatalhaemorrhageObstruction: ischaemia from branch vessel obstruction eg.mesenteric, vertebral, renalEmbolism: plaque or thrombusImpingement or compression of adjacent structure (eg.ureter)Painless mass	Bold and 2 others.

Opening stem: An 80 year old man presents with a leaking AAA and is to undergo Emergency Surgery

	1. What is normal Glomerular Filtration Rate	1. Normal GFR = 125mls/min (180L/24hrs). 10% lower in	Pass/Fail
Physiology: Renal regulation of	(GFR) and what factors regulate it?	females Controlled by Starling Forces ie:	1.a) approx value for GFR
K+ plus GFR	(Prompt: How does it change?)	$ \begin{array}{l} GFR=K(P_{GC}+P_{T})-(\pi_{GC}+\pi_{T})\\ P_{GC}=mean\ hydrostatic\ pressure\ in\ glomerular\ capillaries,\\ PT=mean\ hydrostatic\ press\ in\ tubule.\ \pi_{GC}=osmotic\ press\\ of\ plasma\ in\ glom\ caps,\ \pi_{T}\ OP\ of\ filtrate\ in\ tubule. \end{array} $	b) Identify Starling Forces involved
	(Prompt: Identify two clinical factors that alter Starling Forces)	K = GF coefficient; altered by mesangial cell contraction (-> dec area for filtration). Contraction = Angio II, ADH, NA, PAF, TxA2, hista Relaxation – ANP, dopamine, cAMP, PgE2	c) Identify central role of mesangia cells and two factors which change their degree of contraction
		GFR changes along glomerular cap with Starling forces dropping from 15 mmHg to 0. Clinical Factors altering Starling Forces: Alterations in renal blood flow, systemic BP, ureteric obstruction, renal parenchymal oedema, changes in plasma protein concentration, changes in K as above	d) Identify two clinical factors that alter Starling Forces
	2. (Optional) How do the kidneys deal with Potassium?	 2. Freely filtered at glomerulus (600 mmol/d) Actively reabsorbed in PCT (S60 mmol/d) Secreted in DT – rate proportional to flow Secreted in Collecting Ducts – Aldosterone Excreted = 90 mmol/d Total secreted load averages 50 mmol/d but varies with renal tubular flow and aldosterone lev. 	 2. a) freely filtered at glomerulus, b) largely reabsorbed in PCT c) Sites of distal secretion plus influence of aldosterone
While in ICU, he g	goes into rapid AF and is treated with	Amiodarone	·
Pharmacology: Amiodarone Indications,	What are the indications for amiodarone?	Treatment of atrial and of ventricular tachyarrhythmias. Used both to revert VT & prevent recurrence. Used in VF/VT cardiac arrest (after 3 shocks & adrenaline).	Bold to pass.
mechanism of action, adverse effects	Describe the mechanism of action of amiodarone.	Has Class I, II, III & IV effects. Prolongs the AP duration (hence QT interval) by K channel blockade.	Bold to pass.
	Can you describe the possible adverse effects of amiodarone associated with both its short and long term use?	Acute: Bradycardia & heartblock ; Hypotension; Chronic: Pulmonary fibrosis; Abnormal LFTs & hepatitis; Skin deposits -> photodermatitis & grey-blue discolouration in sun-exposed areas; Asymptomatic corneal microdeposits; Optic neuritis (rare); Hypo/hyperthyroidism.	All bold and 1 other. Especially in those with pre-existing S/AVN disease. Due to peripheral vasodilation.

tem: A 60 yo woman presents with symptoms suggestive of carpal tunnel syndrome

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Anatomy: X-ray - carpal bones /	Identify the carpal bones.	Identify all carpal bones in AP view.	All bones required
hand Include description of contents of carpal	Identify the attachments of the flexor retinaculum.	Scaphoid tubercule, hook of hamate, trapezium and pisiform	2 of 4
tunnel	What structures pass through the carpal tunnel?	FCR/FPL/FDS/FDP tendons + Synovial sheaths Median nerve	bold to pass
	Which muscles flex the wrist?	FCR, FCU, FPL, FDM, FDS, FDL, Palmaris longis	5 of 7
Her symptoms a	are due to complications of lung	cancer	·
Pathology: Clinical effects of tumours	What is the definition of a neoplasm?	Abnormal growth of a tissue Growth exceeds and is uncoordinated with that of the original tissue Growth continues in the absence of the stimuli which evoked the change (preys on host and serves no purpose)	Must get the gist of all 3
	How may a malignant tumour affect the 'host'?	Local and metastatic direct effects. Pressure, Bleeding, ulceration, rupture and infarction. Cachexia Hormonal	3 of 4 bold
	(Prompt: what is meant by paraneoplastic syndrome?) Give examples of paraneoplastic endocrinopathies	Paraneoplastic: - Endocrinapathy with 3 examples (Cushings, SIADH, Ca++ up, hypoglycaemia, Carcinoid synd, polycythaemia) - Nerve and muscle – myasthenia, - Skin - acanthosis nigricans, dermotamyositis - Bone: HPOA and clubbing - Blood/Vascular: anaemia, venous thrambosis	3 examples of paraneoplastic syndrome

Physiology: Control of	What are the major components of the control	Voluntary versus automatic	5 of 7 bold
ventilation	of ventilation (or respiration)	Medulla pacemaker cells,	
		Pons pneumotactic centre modifies the medulla activty	
		Higher centres hypothalamus, limbic system, cerebral cortex	
		Vagal afferents from lung	
		Central chemoreceptors CSF (medulla, floor 4 th ventricle)– It H ⁺ ,	
		Peripheral chemoreceptors carotid and aortic bodies – pO2, pH {	k.
		pCO₂û	
		Integrated response: PaCO ₂ , PO ₂ , pH	
		Lung receptors - stretch, irritant, bronchial C fibres (J receptors),	
	How does a rise in CO ₂ affect ventilation?	Direct effect on central and peripheral chemoreceptors, due to	4 of 5 bold
		both high CO ₂ and lower pH.	
		Increase in rate and depth of ventilation.	
	ning respiratory failure, she requires		
Pharmacology	What is suxamethonium	depolarising muscle relaxant producing rapid neuromuscular	Pass = bold
Suxamethonium MOA,		blockade at motor endplate nicotinic receptors.	
adverse effects		Structurally two acetylcholine molecules linked end to end	
		Phase I (depolarizing)	
	Describe the mechanism of action of	binds to nicotinic receptor; opens channel and causes	
	suxamethonium	depolarisation of motor end plate; spreads to adjacent	Pass = bold
		membranes causing contractions of muscle motor units	
		(fasciculations); depolarised membranes remain depolarised	
		(& unresponsive to subsequent impulses) causing flaccid	
		paralysis	
		Phase 2 (desensitising)	
		With continued exposure, the initial end plate depolarisation	
		decreases & membrane becomes repolarised; membrane	
		cannot be depolarised again as it is <i>desensitised</i> (mechanism	
		unclear however ? due to channel block becoming more	
		important than agonist action at receptor)	
	What are the important adverse effects of	hyperkalaemia (eg burns, trauma patient); cardiac arrhythmias	Pass 2 bold + 2 others
	suxamethonium?	(eg if given with halothane) / bradycardia (repeat doses);	-
		increased IOP; increased intragastric pressure; muscle pain	
		(likely related to fasciculation); malignant hyperthermia,	
		prolonged paralysis	

ТОРІС	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 PATHOLOGY	"An elderly man presents with an acute exacerbation of COPD." What is the definition of emphysema?	 A condition of the lung characterised by irreversible enlargement of the airspaces distal to the terminal bronchiole accompanied by destruction of their walls without obvious fibrosis. 	 BOLD TO PASS Irreversible Destruction
LOA: 1	Describe the pathogenesis of emphysema. Prompt: What is the mechanism of the destruction?	 Mild chronic inflammation (neutrophils + macrophages) - mediator release (e.g. leukotriene B₄, IL-8, TNF) – causes damage and sustains inflammation Protease-antiprotease imbalance – destructive effect of high protease activity in pts with low anti-protease activity - 1% of pts with emphysema have alpha1- antitrypsin deficiency (inhibits proteases, including elastase, secreted by neutrophils) Oxidant-antioxidant imbalance – abundant reactive oxygen species (superoxide dismutase, glutathione)in smoke depletes antioxidant mechanisms, incite tissue damage 	TWO EFFECTS • Chronic inflammation • High protease activity • Reactive oxygen species
	What are the possible complications of emphysema?	 Bullous lung disease Expiratory airflow limitation Infection Respiratory failure Pneumothorax Cor pulmonale, congestive heart failure ("pink puffers") 	THREE COMPLICATIONS
Question 2 PHYSIOLOGY	1. What are the possible physiological causes for hypoxemia in this man?	Hypoventilation Diffusion limitation Shunt V/Q mismatch	Need 2 /4 to pass or a good understanding of the concepts
LOA: 1	 What is the alveolar gas equation ? Explain the concept of the A-a gradient. 	$PAO_2 = PIO_2 - \frac{PACO_2}{R} + F$ R Difference between the measured and the predicted paO ₂ .	Numbers ok Need the basic concept
Question 3 PHARMACOLOGY	 <i>"Moving on. He is treated with a cephalosporin."</i> 1. What is the mechanism of action of cephalosporins? 	 Inhibit bacterial cell wall synthesis, cell division and growth (similar to penicillins) Bactericidal Work best in rapidly dividing cells Beta-lactams 	 Bold to pass Beta-lactams
LOA: 1	 What class of antibiotics do they belong to? How are they classified and give an example of each class ? 	 Beta-factains Generations – First through Fourth 1st Generation: very active against GPC, E. coli, K. pneumoniae, Proteus OK but Pseudomonas not. Anaerobic cocci sensitive. Cephalexin, Cephazolin 	 Beta-lactams 4 Generations Concept of increasing activity against gram -ves and example of 2 classes

	Prompt: How does the spectrum of microbiological activity differ between the different generations?	 2nd Generation: active against those by 1st generation but added GN coverage – Klebsiella, some anaerobe cover. NO Pseudomonas. Cefaclor, Cefuroxime 3rd Generation: expanded GN coverage and cross BBB. Less active vs Staph. Effective against against B- lactamase producing Haemophilus and Neisseria. Ceftazadime works vs Pseudomonas. Ceftriaxone, Ceftazidine, Cefotaxime. 4th Generation: more resistant to B- lactamases, extended coverage against enteric GNR, pseudomonas, enterobacteriaceae, S pneumonia, S aureus, Haemophilus and Neisseria. 	
Question 4 ANATOMY	"Moving on, the patient has limitation of shoulder movement."	Subscapularis Origin – Medial 2/3 costal surface of scapula Insertion – fuses with capsule of shoulder joint and into lesser	Must know all 4 to pass
	What muscles are called the "rotator cuff muscles?"	tuberosity of humerus Nerve – Upper and lower subscapular	Must have knowledge about
LOA: 1	Demonstrate or describe the origins and insertions of the rotator cuff muscles.	Teres minor Origin – Dorsal surface axillary border of scapula Insertion – Lower facet greater tuberosity humerus	origins, insertions and actions of 2/4.
	Note that the model has no rotator cuff muscles.	Nerve – Posterior branch axillary N <u>Supra spinatus</u> Origin – medial2/3 supraspinous fossa scapula Insertion – Upper part of greater tuberosity humerus Nerve – Suprascapular nerve C5,6 <u>Infraspinatus</u> Origin – Medial 2/3 infraspinous fossa and deep surface infraspinous fascia which covers muscle. Insertion – Central facet greater tuberosity humerus Nerve – Supra scapular	
	What are the actions of the rotator cuff muscles?	Supraspinatus – Initiates abduction and other muscles hold humeral head down Subscapularis – medial rotation of humerus Infraspinatus and teres minor –lateral rotators of humerus Supraspinatus – <u>abducts shoulder</u> All muscles <u>stabilise the shoulder joint</u> by bracing humeral head against glenoid (tendons fuse with capsule)	

Candidate Number:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 PATHOLOGY	"A patient presents with chronic inflammatory arthritis." 1. What are the characteristics of chronic	 Inflammation for a prolonged period (week or more). Characterised by macrophages, lymphocytes and plasma cells With simultaneous-active inflammation/ tissue destruction and attempts at repair by connective tissue, fibrosis 	% Bold to pass
LOA: 1	inflammation? 2. Why does macrophage accumulation persist in chronic inflammation?	Continued recruitment of monocytes (continued expression of adhesion molecules and chemotactic factors) Local proliferation of macrophages Immobilisation of macrophages	Bold
	3. What are the causes of chronic inflammation? (prompt can you give an eg. of each)	 Persistent infection- TB, syphilis Autoimmune-RA, MS, IBD, SLE Prolonged exposure to an agent: exogenous-silica->silicosis, FB, persistent trauma endogenous-lipid->atherosclerosis 	2/3 bold with examples
Question 2 PHYSIOLOGY LOA: 1	Question 2 - Physiology 1. List the physiological effects of glucocorticoids	 a) Inc protein catabolism. b) Inc hepatic glycogenolysis and gluconeogenesis, inc Glu-6-phosphatase → inc plasma glucose c) Antiinsulin effects on peripheral tissues d) Inhibit ACTH secretion e) Controls vascular reactivity to NAd and Ad f) Control ability to excrete water load g) Increased neutrophils/ plts/ RBC and dec eosinophils/ lymphocytes/ basophils 	2 bold and 2 others
	 2. What are the vascular effects of abruptly stopping long term glucocorticoids? Bonus: What is the benefit of elevated glucocorticoid levels in stress? 	Vascular smooth muscle becomes unresponsive to NAd and Ad Capillaries dilate and inc permeability Failure to respond to NAd impairs vascular compensation for hypovolaemia and promotes vascular collapse Effect on vascular activity to catecholamines plus necessary for catacholamines to mobilise FFA for emergency energy source	Must have general concept
Question 3 PHAR MA COLOGY	1. Moving on to pharmacology. What is the mechanism of action of the non steroidal anti – inflammatory drugs (NSAIDs)?	NSAIDs serve to suppress inflammation chiefly by inhibiting prostaglandin synthesis. In so doing they decrease the sensitivity of vessels to bradykinin and reverse the vasodilation of inflammation. Cyclo – oxygenase (COX) is the key catalyst for arachidonic acid	Pass criteria Inhibit COX, thus decrease prostaglandin synthesis – and in so doing the response to
LOA: 1	2. How does aspirin differ from other NSAIDs in its action on COX?	conversion to prostaglandins. NSAIDs inhibit COX , thus inhibiting this conversion. Aspirin (original NSAID) irreversibly inhibits COX , whilst the newer NSAIDS (ibuprofen, diclofenac) reversibly inhibit COX.	inflammation is modulated. Irreversible vs reversible

	2. What are the adverse effects of NSAIDs?	 2 types of COX exist – COX 1 is expressed in most cells, and COX 2 is inducible, its expression varies depending on stimulus. Selective COX 2 inhibitors (celecoxib) do not affect platelet function at usual doses, whilst the other NSAIDs do inhibit platelet aggregation. GI EFFECTS – GI irritation, ulcers, abdominal pain, N and V BLEEDING – secondary to platelet effects RENAL – nephrotoxicity, hyperkalaemia ALLERGY – rash, pruritis CARDIOVASCULAR – Selective COX 2 inhibitors - implicated in increased risk of c'vasc thrombotic events, fluid retention, oedema, hypertension CNS – headaches, tinnitus, dizziness, stroke PULMONARY – asthma HAEM - rare – t'cytopaenia, neutropaenia HEPATIC – abnormal LFTs 	% Bold plus one other to pass – namely – GI effects, bleeding, and renai effectsplus any one of the others
Question 4 ANATOMY	Moving on to anatomy	23. Sciatic nerve – tibial part	All three bolded to pass and
	a. This is a photograph of the	1 – common fibular part 2. gluteus maximus	at least two other named
LOA: 2	 Point to piriformis if not identified. 	3. gluteus medius4. gluteus minimus5. greater trochanter of femur6. inferior gamellus7. inferior gluteal artery8. 21, 22. inferior gluteal nerve9. internal pudendal a10. ischial tuberosity11. nerve to obturator internus13. obturator externus14. obturator internus15. piriformis16. posterior femoral cutaneous nerve17. pudendal nerve18. quadratus femoris	structures.
	b. Describe the actions of the gluteus maximus muscle.	19. sacrotuberous ligament20. superior gamellusStraightens the leg at the hip during walking, running, climbing.Assists in raising from a sitting position.Lower part acts as adductor and external rotator of lower limb.Tensor of the fascia lata and by its connection with the iliotibial band,steadles the femur on the tibia during standing when the extensormuscles are relaxed.	Bold to pass
	c. Describe the course of the sciatic nerve in the gluteal region and leg.	Enters the gluteal region via the greater sciatic foramen inferior to piriformis and deep to gluteus maximus; descends in midline of the posterior thigh deep to biceps femoris; bifurcates into tibial and common fibula nerves at apex of popliteal fossa.	Two of three bolded to pass

STEM: Following administration of anti-venom for a snakebite, a 60 yr old man is noted to be hypotensive. We will begin with Physiology....

QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
What is cardiac output?	Output of the heart per unit time. HR x SV	Bold
What factors determine cardiac output?	SV is related to the preload (degree of stretch prior to contraction) and afterload (resistance to flow) of the heart and the intrinsic contractility of the myocardial cells. HR- Sympathetic vs parasympathetic stimulation.	
What methods can be used to measure cardiac output?	Direct Fick method or indicator (or thermal) dilution Can also measure by Doppler U/sound techniques Fick principle; amount of substance taken up by organ per unit time = (A-V conc difference) x blood flow. In the heart	2 to pass
	LV output =O ₂ consumption ml/min/[A _{O2]} -[V _{O2}] (both in ml/L) Indicator dilution; substance injected IV and serial sampling in arterial blood performed, log plotted and extrapolated to find circulation time (indicator must not be lost from circulation)	
What causes of decreased cardiac output could be causing this man's hypotension?	 variation in heart rate due to induction of arrhythmias or heart block (too fast or too slow) Reduced preload (venodilatation with reduced venous return due to anaphylaxis) Increased afterload (not too likely in this case Reduced contractility (i.e. ischaemia, venoms, drugs) 	
	What is cardiac output? What factors determine cardiac output? What methods can be used to measure cardiac output? What causes of decreased cardiac output could be causing this man's	What is cardiac output? Output of the heart per unit time. What factors determine cardiac output? SV is related to the preload (degree of stretch prior to contraction) and afterload (resistance to flow) of the heart and the intrinsic contractility of the myocardial cells. What methods can be used to measure cardiac output? Direct Fick method or indicator (or thermal) dilution Can also measure by Doppler U/sound techniques Fick principle; amount of substance taken up by organ per unit time = (A-V conc difference) x blood flow. In the heart can use O ₂ . LV output =O ₂ consumption ml/min/[A ₀₂₁ -[V ₀₂] (both in ml/L) Indicator dilution; substance injected IV and serial sampling in arterial blood performed, log plotted and extrapolated to find circulation time (indicator must not be lost from circulation) What causes of decreased cardiac output could be causing this man's hypotension? 1) variation in heart rate due to induction of arrhythmias or heart block (too fast or too slow) 2) Reduced preload (venodilation with reduced venous return due to anaphylaxis) 3) Increased afterload (not too likely in this case

Question 2 PHARMACOLOGY	1. Describe the pharmacokinetics of propofol.	1. Distribution half life 2-4 minutes Elimination half life 4-23 minutes	Bold
PROPOFOL LOA: 1		Rapid onset and recovery. Termination of drug effect due to redistribution from brain to sk muscle and then fat	
		(rather than metabolism). Duration of action 3-8min	
(Katzung 12 th ed p 438-440)		Rapidly metabolised in liver and extrahepatic sites (lungs). Water soluble metabolites excreted in urine.	
	2. What is the usual induction dose of propofol?	2. 1-2.5mg/kg adults, 2.5-3.5mg/kg in kids	Bold
	3. What clinical effects are expected after this dose of propofol is administered.	 Anaesthesia / Sedation. Respiratory depression. Transient apnoea. Decreased blood pressure through vaso and venodilation (most pronounced of induction drugs). Does NOT have analgesic properties Anti-emesis, Metabolic acidosis, Pain at injection site 	Bold
	 List some drug interactions of propofol important in the setting of sedation/anaesthesia 	 Opioids – enhance respiratory depression Benzodiazepines - enhanced sedation and respiratory depression 	1 of 2

	We are now moving to Anatomy			
Question 3	1.	1.	bold 5/6 total	
ANATOMY	a) Identify the <u>structures</u> in the upper	Tongue		
Model – Larynx	airway that could lead to airway	Tonsils, pharynx	2 underlined	
(Full model with	obstruction	Epiglottis, glottis		
tongue in situ)				
	b) What other structures are visible	Hyoid bone, floor of mouth - mylohyoid (Prompt)		
LOA: 1		Mandible		
		Buccal muscles, cheek. Medial pterygoid muscles		
		ary-epiglottic folds & vallecula, Piriform fossa		
Model - Tongue	2. What are the bony and cartilaginous	2. Cartilage:	All bold	
& Airway	components of the larynx	Cricoid, Thyroid, Arytenoids and Epiglottis		
(Somso upper		Bone: Hyoid		
airway models)				
an way modelsy		3. Motor:		
	3. What is the innervation of the larynx?	Recurrent laryngeal N (inferior laryngeal-terminal branch of	Bold	
		Rec Laryngeal) except for Cricothyroid which is External		
		Laryngeal N (tenses cords). Both from CN X		
		Sensory:		
		Above cords: Internal Laryngeal N (branch of superior		
		laryngeal N)		
		Below cords: Recurrent Laryngeal N (Inferior laryngeal		
		branch) (Br of CrN X)		

Question 4	1. What is the pathogenesis of serum	1. Type 3 hypersensitivity	Bold
PATHOLOGY	sickness?	Phase 1: Formation of Immune complexes.	3 Phases
Туре З		Protein Ag, 1/52 -> Ab -> blood -> Ag-Ab complexes	
Hypersensitivity		Phase 2: Deposition of immune complexes.	
LOA: 1		Medium size, Ag excess most pathogenic	
		High pressure filtration, glomeruli, joints	
		Phase 3: Tissue injury caused by immune complexes	
(Robbins pp 204- 205)		Acute inflam reaction ~ day 10	
	Prompt (if required):		
	How is the tissue damage caused?	IgG & IgM (C' fixing Ab) bind to leukocyte Fc receptors.	
		Leuk recruitment and activation - release	
		proteases/lysozymal enzymes ->damage.	
		Deposition, activation and Consumption of C' and decreased	
		C3 levels -> inflam reaction and tissue damage	
	2. What are some clinical features?	2. Fever, urticaria, arthralgia, LN enlargement, proteinuria	3 of 5
	3. What are some other examples of	3. Acute: post strep G-N, reactive arthritis, Arthus reaction	3 examples
	Type III hypersensitivity?	Chronic: SLE, PAN, other vasculitides, possibly membranous	
		G-N,	

Stem: A 65 yr old man presents with an inferior myocardial infarction We are starting with Physiology

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 PHYSIOLOGY	1. Draw and describe an ECG tracing of a single normal heart beat	fit and and a second the second secon	
ECG including MI changes 10A: 1		BE PH ST ST INUKA	
Ganong 24 th ed pp	Prompt: What produces the waves and segments?	normal 2 Sector 20 C4 Sector 2	Bold 5/6
524-529, 534-537		P wave- atrial depolarization, PR AV conduction	
		QRS- ventricular depolarization, ST- plateau of Vent depolarization, (QT- Ventricular Action potential), T wave- Vent repolarization	
	2. What features would appear different in this patient's ECG?	2. ST segment elevation in inferior leads ST segment depression in the reciprocal leads	both
	3. At the myocardial cell membrane	3. Abnormally rapid depolarisation in early phase	1
	level, what causes these changes?	(accelerated opening of K+ channels)	1 of 3 to pass
		Decreased resting membrane potential (due to loss of intracellular K+)	
		Slowed depolarization of affected cells (cf normal cells)	

We are now mov	ing to Pharmacology		
Question 2 PHARMACOLOGY GTN	1. By what routes can GTN be administered?	1. Sublingual, transdermal, IV, oral, buccal, inhaled	Bold 3/4
LOA: 1	2. Why are parenteral routes favoured?	2. To avoid the hepatic first pass effect which significantly decreases bio-availability	bold
Katzung 12 th ed Chapter 12) MoA, principles of tachyphylaxis	3. What is meant by the term tachyphylaxis as it relates to Glyceryl Trinitrate (GTN)	 Continuous exposure to nitrates – smooth muscle may develop tolerance. Particularly seen with continuous IV infusion or long acting preparations. (oral, transdermal) 	Understand concept
	What is the implication of this for the dosing and administration of GTN	Concept of "drug-free" interval – at least 8h between doses	concept
	What is the theoretical basis for this phenomenon? (bonus)	 (a) Diminished release of nitric oxide resulting from reduced bioactivation secondary to depletion of tissue thiol compounds, decreased tissue sulphydryl groups, increased generation of O2 free radicals, decreased availability of CGRP. (b) Systemic compensation – after > 1 day of therapy salt and water retention reverse favourable hemodynamic change 	for better candidates
	4. When should GTN be used with caution?	 hypotension, those on sildenafil, inferior&posterior MI/RV infarct, Fixed cardiac output (AS, tamponade etc), raised ICP, significant tachy/brady cardia, allergy 	Bold +2

We are now cha	Inging to Anatomy		
Question 3 ANATOMY	1. Identify the arterial supply of the heart	1. L+R coronary arise from corresponding aortic sinuses above AV	bold to pass
LOA: 1		R coronary courses inf in AV groove. Gives off branches to SA node, Marginal, Post interventric, and AV nodal	
Heart model assem b led		L coronary bifurcates into Circumflex and LAD (anterior I – V art), then Cx gives off Marginal branch, and LAD gives off diagonals.	
	2. What does the R Coronary artery suppl y ?	2. R atrium, most of RV, Diaphragmatic surface LV Post 1/3 septum, 60% SA, 80% AV	3 out of 6 to pass
	3. Describe the venous drainage of the heart	3. Major drainage is via the Coronary sinus 3 main tributaries are:	boid +2
		Great cardiac vein (accompanies LAD, then Cx)	
		Middle (accompanies PIV)	
		Small cardiac veins (accompanies R marginal). Oblique vein L atrium marks start of sinus.	1
(Take the model		Ant cardiac vn's start ant surface RV, drain straight into R atrium Smallest cardiac vn's (venae cordis minimae) drain direct into chambers	
back!)	4. Describe the major components of the conducting system	4. SA Nodejunction of SVC & RAAV Nodenear coronary sinus-postero-inferior interatrial septum	3 of 4
		AV Bundle R & L Bundles	

<u></u>			<u> </u>
Question 4 PATHOLOGY Healing post MI LOA: 1	1. What are the consequences and complications of a myocardial infarction	1. Contractile dysfunction/CCF, Arrhythmias, Myocardial rupture, Pericarditis, R vent infarction & RHF, infarct extension, Infarct expansion, Mural thrombus (=>embolism), Ventricular aneurysm, Papillary muscle dysfunction, Progressive late HF, Remodelling, death	6
Robbins pp 551- 553, 102-106	2. What are the main cardiac rupture syndromes	2. Free wall -> tamponade (most common of 3 occurs at 1- 10 days) Septum -> VSD and L->R shunt Papillary muscle dysfunction -> severe Mitral Regurg	1 of 3
	3. What changes occur in ventricular remodelling	3. Hypertrophy and dilatation, increased oxygen demand - > ischaemia & depressed cardiac function, scar formation -> stiffening and hypertrophy.	3
	4. What systemic factors affect infarct healing?	4. Nutritional: protein, Vit C Metabolic: diabetes Circulatory: arterial or venous Hormonal: glucocorticoids	3

Stem: A 30 year old man has had a motor vehicle accident after a heroin overdose, and has been given Naloxone. Commencing with Pharmacology:

TOPIC	QUESTIONS	KNOWLEDGE	NOTES
PHARMACOLOGY Question 1	1. What is an antagonist?	1. Receptor antagonists bind to receptors but do not activate them. The primary action of antagonists is to prevent agonists from activating receptors.	Bold to pass
LOA: 1	2. What is the difference between a competitive and non-competitive antagonist?	2. Competitive antagonist: In the presence of increasing concentration of antagonist, higher concentrations of agonist will produce a given effect. Eg propanolol and noradrenaline / adrenaline. Irreversible or non competitive antagonist Bind via covalent bonds or just binding so tightly to receptor so receptor unavailable for agonist. Duration of action of antagonist depend on rate of turnover of receptor-antagonist molecules.	
	What type of antagonist is naloxone?	Competitive	
	3. What effect does a competitive antagonist have on the concentration-effect curve?	3. Shift agonist vs effect curve to right. Higher concentrations of agonist can overcome competitive antagonist	
		A (1) The formula of the second sec	Aronist Affact (C)

ΑΝΑΤΟΜΥ	1.	Demonstrate the major anatomical	Pubic symphysis, inferior and superior pubic rami, obturator	6 major features to pass
Question 2		features of the pelvis.	foramen, acetabulum, iliac crest, sacro-iliac joint, sacrum.	
LOA: 1	2.	What is this? (AIIS)What attaches here?	AIIS- Rectus femoris	3/4 to pass
		What is this? (ASIS) What attaches here?	ASIS- Sartorius	
	3.	Describe the course of the iliac arteries.		
			Common Iliac origin from aorta L3-5	Bold to pass
			Follows medial border of Psoas to pelvic brim	
			Divides at level of L5S1	
			Internal Iliac artery enters pelvis	
			External Iliac artery follows Iliopsoas ends at the inguinai	
			ligament and becomes femoral artery at mid-inguinal point	

Stem: Moving on	to Pathology: The patient becomes hypotensi	ve.	
PATHOLOGY			
Question 3	 What is hypovolaemic shock? 	 Systemic hypoperfusion due to reduced effective circulating blood volume resulting in impaired tissue perfusion and cellular hypoxia 	Bold to pass
LOA: 1			
	Describe the stages of hypovolaemic shock	 A. Non- Progressive phase – reflex compensatory mechanisms activated to 	All 3 phases to pass.
	Prompt: What compensatory mechanisms	maintain vital organ perfusion.	2A.
	are involved?	Variety of neurohumoral mechanisms	Bold to pass + 3 features
		activated to help maintain cardiac output	(prompt if necessary)
		and blood pressure (baroreceptors	
		reflexes, release of catecholamines,	
		activation of renin-angiotensin axis, ADH	
		release and increased sympathetic output resulting in: tachycardia, peripheral	
		vasoconstriction, and renal conservation of	
		fluid with decreased urine output.	
		Coronary and cerebral vessels less sensitive	
		to sympathetic response and blood flow/	
		O ₂ delivery spared.	
		B. Progressive phase- tissue hypoperfusion and	
		worsening circulatory and metabolic imbalance	
		Including acidosis.	Bold to pass.
		Widespread tissue hypoxia resulting in anaerobic	
		glycolysis with excess lactic acidosis production blunts vasomotor response \rightarrow peripheral pooling,	
		hypoxic injury, DIC, vital organs begin to failure	
		hypoxic injury, bic, vital organs begin to randre	
		C. Irreversible phase - after body has incurred	
		cellular and tissue injury so severe that even if	
		haemodynamic defects are corrected, survival is	Bold to pass
		not possible	
	3. What happens at the cellular and tissue level during the irreversible phase?	 Widespread cell injury lysosomal enzyme release 	
	level during the irreversible phaser	- nitric oxide \rightarrow decreased myocardial	3 features to pass
		contractility	
		 acute tubular necrosis -> acute renal failure, 	
		 pre-cardiac arrest - > death 	
		 ischaemic gut → bacteraemic shock severe hypotension, unconscious, anuric 	

PHYSIOLOGY					
Question 4	1. Define the	term 'referred pain"	1.	Irritation of a visceral organ causing pain in a distant somatic structure	Bold to pass
LOA: 2	2. From whic shoulder?	h structure is pain referred to the	2.	Diaphragm	Bold to pass
	3. Explain thi	s relationship	3.	Dermatome rule. Referred pain is usually to a structure that developed from the same embryonic segment or dermatome as the structure from which the pain originates	Bold to pass
	4. Can y o u gi pain?	ve another example of referred	4.	Cardiac pain to arm. Ureteric pain to testicle.	1 to Pass
		ood candidate) What is the cal basis/theory for referred pain	5.	Convergence-Projection Theory. Somatic and visceral pain fibres converge on the same second- order neurons in dorsal horn that then go on to thalamus and sensory cortex via common path. Sensory cortex cannot determine whether the stimulus came from viscera or are of referral	

Stem: A 60 yr old woman presents with severe jaw pain following a dental extraction a month earlier and is given IV morphine. Commencing with Pharmacology:

TOPIC	QUESTIONS	KNOWLEDGE	NOTES
PHARMACOLOGY Question 1 LOA: 1	 Define drug elimination half life Prompt: Is there a formula γou can use? 	Time required to change the amount of drug in the body by ½ during elimination T1/2 = 0.7 x Vd/clearance (0.7 approx log 2) 50% after 1, >90% after 4	Bold to pass
	How does knowledge of a drug's half life help us clinically?	Dosing regimens Decay afterdose/overdose Time to steady state after dose change	2 to pass
	3. What disease states cab affect elimination half-life?	Liver, renal, cardiac disease	one organ
	4. What disease state could affect the elimination half-life of morphine?	Liver, renal	one organ
ANATOMY Question 2 LOA: 2	 Which Nerves run on or within the bony mandible 	Inf alveolar/mental N (V3- mandibular) Lingual N ((V3+ chorda tympani) + 1 other of Auricultemporal N (V3) N to mylohyoid (V3- branch of inf alveolar) Mandibular branch of the facial N (VII)	Bold to pass
		N to mylohyoid (V3- branch of inf alveolar)	
	 Show the course of the inferior alveolar N on this mandible and why it is prone to injury? 	Early large branch of mandibular trigeminal after it exits the Foramen ovale, runs on surface of inside mandible ramus to Mandibular foramen , (gives off N to mylohyoid), Passes inf and ant thru bone in alveolar canal which is v	

PATHOLOGY Question 3 .OA: 1	 Describe the pathogenesis of osteomyelitis. Prompt: How would this patient have suffered a bony infection of his jaw? 	Local infection related to extraction of tooth Blood borne Spread from neigbouring gingival source.	2/3
	2. What organisms cause osteomyelitis?	Staph Aureus majority >80% pyogenic E Coli, KI Pneum, Pseudo A, from GU tract or IVDU H Infl and GBS in neonates Viruses, Fungi, Parasites, TB, syphilis also About 50% no orgs found.	Staph A and 1 other
	3. What changes occur in the bone?	Acute inflammation and necrosis, abscess formation Sclerosis and involucrum formation Deformity and sequestrum formation, Draining sinus Characteristic lytic focus surrounded by zone of necrosis on X ray, lifting of periosteum 5-25% become chronic inflammation	Bold
	4. What are the clinical consequences of osteomyelitis?	Resolution after Rx with IV antibiotics and drainage Conversion to chronic O myelitis Deformity and bony destruction Severe sepsis syndrome, ARF etc.	2 to pass

PHYSIOLOGY Question 4	 What percentage of cardiac output goes to the kidneys? 	RBF = 1.2-1.3L/min or approx 25% CO (adult)	RBF
LOA: 1	2. How is renal blood flow regulated? Prompts: What other mechanisms are there?	Substances/Chemicals Norepeinephrine (noradrenaline) • Constricts renal vessels • Stimulates renal nerves to ↑ rennin secretion Dopamine – renal v/dilatation A II – arteriolar constrictor PG - ↑ cortex flow, ↓ medulla flow Ach – v/dilatation	3 /6 substances plus nerve or auto – with example
		 High protein - ↑ b/flow <u>Renal Nerves</u> Stimulation nerves = ↑renin secretion , ↑JG sensitivity, ↑Na resorption, and renal vasoconstriction Strong stimulation sympathetic (noradr) ↓flow Fall in BP = v/constrict 	
		 Autoregulation Renal vasc resistance varies with pressure to keep RBF fairly constant Present in denervated kidney, but not if drugs that paralyse vasc sm muscle Factors = direct contractile response, NO, A II 	
	3. How can renal blood flow be measured?	 Fick principle – subs taken up/unit time PAH used to measure renal plasma flow Renal b/flow using plasma flow and Hct 	One example
	 Describe the differences in regional blood flow within the kidney. 	 AV o2 difference for kidney = 14ml Cortical b/flow = 5mL/g/min Little o2 consumption Medulla b/flow low (outer = 2.5ml, inner= 0.6ml) Maintence of osmotic gradient 	One aspect of regional blood flow to pass

ACEM PRIMARY 2012/1 Anatomy VIVA March 29 Thursday Morning Session 1 Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	a) Identify the structures that make up the mediastinal contours on this CXR	Right: R Brachiocephalic v, SVC, R pulmonary trunk , R atrium Left: Aorta, Pulm trunk, L atrium, L Ventricle	Pass criteria: At least 6 of bolded to pass?
Borders of heart, lung anatomy LOA: 2	b) Describe the lobes of the lungs and their fissures. (note: these may not be actually visible on the CXR we have, but candidates can show where they would be)	Both lungs: upper and lower lobes are separated by the oblique fissure (from T2 posteriorly to 6 th costal cart anteriorly). On the right the upper and middle are separated by the transverse fissure (at level of R lung hilum along line of 4 th rib) Left lung – prominent cardiac notch in lower lobe.	All bold
Question 2 Bone: Ankle joint LOA: 1	(a) Demonstrate the bony features of the ankle joint	 Articular surface of distal tibia including medial malleolus. Lateral malleolus of distal fibula. Articular surface of talus 	All bold
	(b) Demonstrate the ligaments that stabilise the ankle joint (name and describe / show attachments)	 Lateral ligament: From lateral malleolus. Ant. talofibular(weakest), Post talofibular(strong), Calcaneofibular Medial ligament (deltoid): Fans out from medial malleolus to attach to talus, calcaneus and navicular (4 parts: tibionavicular /tibiocalcaneal /ant. and post tibiotalar) Ant. and post tibiofibular ligaments also shown on model 	All 3 bolded for lat, and medial (at least two attachments)
Question 3 Lateral compartment of leg (Model lower limb) LOA:1	a) Identify the muscles of the lateral compartment of the leg and describe their origins and insertions	 Origins & Insertions F. longus Origin: Head + prox 2/3 lat surface of fibula Insertion: Base of 1st MT + medial cuneiform F. brevis	Fibularis tertius is in the anterior compartment F. longus passes behind the lateral malleolus and crosses the plantar aspect of the foot to insert medially
	b) What is their nerve supply?c) What are their actions?		

Question 4	a) Identify the ulnar nerve in this photo and adjacent	25. ulnar n	Ulnar n and Median n and 2
Photo: upper limb,	structures	23. ulnar artery	other structures to pass
nerves of hand-motor		9. flexor carpi ulnaris	
and sensory		26. deep branch of ulnar nerve	
Pg 163 McMinn's		11. flexor digitorum profundus	
LOA: 1		16. median n	
	b) Demonstrate where sensation changes may occur if	Palmar and dorsal aspects of 1 and a half ulnar fingers, adjacent palmar	Finger distribution to pass
	the ulnar nerve is injured in the forearm	and dorsal aspects of hand and ulnar aspect of wrist	
Question 5	a)Describe the arterial blood supply of the	LCA/RCA from aorta.	Must describe 3 vessels in bold
Discussion: Blood supply	myocardium.	LCA branches into	and some description of what
of the myocardium LOA: 2	Prompt: Tell me about the coronary arteries.	 LAD (or AI)– IV groove to apex, anast with PDA in IV groove. Anterior surface both ventricles + ant 2/3 IV septum Circumflex – Coronary groove to posterior surface heart. Supplies lat LV. Anast with RCA. PDA in 1/3. (L dominant) RCA coronary groove. RV, posterior 1/3 IV sept, post. surface, PDA in 2/3 (R dominant) 	they supply to pass.
		SA node: RCA in 60%. LCA in 40%.	SA/AV node: usually by RCA +
	b)What is the blood supply of the conducting system?	AV node: RCA in 80%. LCA in 20%.	AV bundles by LCA to pass
		AV Bundles: LAD in most.	
	c)Describe the venous drainage of the heart.	 Coronary sinus into RA receives from 1. great cardiac vein: ant IV groove → coronary groove → coronary sinus 2. middle cardiac vein: Post IV groove → coronary sinus 3. small cardiac vein: inferior surface → coronary groove → coronary 	Bonus details
		sinus	
		Some ant cardiac veins into RA.	

ACEM PRIMARY 2012/1 Anatomy VIVA March 29 Thursday Afternoon Session 2 Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: CT Brain LOA: 2	a) Identify anatomical features of the brain shown in this CT scan	Frontal, temporal or parietal (or both) and occipital lobes, including gyri and sulci. Thalamus, internal capsule(ant/post limbs), caudate nucleus Lateral ventricles (ant/post horns), choroid plexus posteriorly Falx cerebri	Bold to pass
	b) Describe the territories that the cerebral arteries supply.	Branches of Circle of Willis: Anterior cerebral a – Frontal lobe, medial and superior surface Middle cerebral a - Temporal lobe and lateral surface Posterior cerebral a - Occipital lobe, inferior surface	All bold
Question 2 Bone: Hip joint LOA: 1	(a) Demonstrate the bony features of the hip joint	 Acetabulum: Formed by the ilium, ischium and pubis. Lunate surface of acetabulum. Acetabular notch. Femoral head 	Bold
	(b) Describe the ligaments that stabilise the hip joint and demonstrate their attachments.	 Iliofemoral: AIIS and acetabular rim(very strong) to intertrochanteric line Pubofemoral: obturator crest of pubis to blend with medial aspect of iliofemoral lig. Ischiofemoral: posterior acetabular rim (weakest), spirals supero-laterally to base of greater trochanter Transverse acetabular: bridges acetabular notch Ligament of head (minimal role in stability), acetabular notch to fovea of head 	Iliofemoral and one other

Question 3 Posterior compartment of leg (Model leg) LOA: 1	 a) On this model demonstrate the muscles of the posterior compartment of the leg. b) Demonstrate the origins and insertions of the superficial group c) What is their Nerve Supply? d) Describe their action 	 Superficial: Gastrocnemius /soleus/plantaris Gastroc Lat head from lat aspect lat femoral condyle Medial head from popliteal surface of femur above medial femoral condyle. Insertion-Into posterior surface of calcaneum via calcaneal (Achilles) tendon (along with soleus + plantaris) Soleus Origin from prox ¼ fibula + soleal line & middle 1/3 tibia Nerve supply - All tibial nerve \$1 \$2 	Superficial + deep groups divided by transverse intermuscular septum. Nerves and blood vessels run in deep sub-compartment Bolded
		3. Action: All plantarflex ankle. Gastrocnemius flexes leg at knee	
Question 4 Photo upper limb: Rotator cuff muscles- actions and nerve supply LOA: 1	a) Identify the rotator cuff muscles in this imageb) What are the actions of the rotator cuff muscles?	Supraspinatus Infraspinatus Teres Minor Subscapularis They form a musculotendinous structure around the shallow glenohumeral jt, protecting the jt and gives it stability. Supraspinatus – initiates shoulder abduction Infraspinatus and teres minor-lateral arm rotation Subscapularis- medial arm rotation	All bold Joint stability plus one bold
	c) What are their innervations?	Supraspinatus- Suprascapular n (C4,C5,C6), Infraspinatus- Suprascapular n (C5,C6), Teres minor- Axillary n (C5,C6) Subscapularis- Upper and lower subscapular n(C5,C6,C7)	2/4 required
Question 5 Portal Systemic Anastamoses LOA: 2	a)Describe the portal-systemic anastamoses.	 Oesophageal veins draining into azygos (systemic) or left gastric vein (portal) 2. Rectal: inf & middle rectal veins into IVC (systemic) and sup rectal vein into inf mesenteric (portal) 3. Umbilical: Paraumbilical (portal) and epigastric veins ant abdominal wall (systemic) 4. Retroperitoneal: visceral (portal) veins on bare areas of organs (liver/ colon/ spleen) and veins of post abd wall (systemic) 	Oesophageal + 1 other to pass
	b) When do these become clinically significant?	 Obstruction to portal flow from liver disease/ other obstruction (portal hypertension) Large volume portal-systemic shunting (no valves) with dilation Risk of major haemorrhage (Oesophageal varices) 	Bold

ACEM PRIMARY 2012/1 Anatomy VIVA

A March 30 Friday Morning Session 3

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Ureter in the pelvis LOA: 2	a) Describe the path of the ureter in this Xray	Descends on Psoas m just medial to the tips of the vertebral T/V processes to cross the pelvic brim at the bifurcation of the common iliac arteries/ SIJ Bends laterally along the lateral wall of the pelvis , towards ischial spines, then turns medially to enter the base of the bladder	Bold to pass
	b) Where does the ureter narrow in the pelvis anatomicallyc) Give a clinical example of why this may be important	1. Pelvic brim 2. VUJ at bladder base Site of ureteric calculus obstruction	One of two bold
Question 2 LOA: 1 Bones : Elbow Joint	(a) Demonstrate the bony features that form the elbow joint articulation	 Humero-ulnar articulation – between trochlea of humerus & trochlear notch of ulna Humero-radial articulation – between capitulum of humerus & head of radius 	Bold to pass
	(b) Describe the ligaments of the elbow joint and demonstrate their attachments	 Radial collateral ligament (lateral) – from lateral epicondyle of humerus to annular ligament of radius Ulnar collateral ligament (medial) – from medial epicondyle of humerus to coronoid process / olecranon of ulna - 3 components : anterior (strongest), posterior, oblique bands 	
Question 3 Quadriceps muscles LOA: 1 Introduce: "We'll remove the Sartorius muscle and TFL, can you please"	 Demonstrate the quadriceps muscles on this model Prompt: what are the origins and insertions? 	 Quadriceps a. Rectus femoris: i. Origin: Anterior inferior iliac spine + ilium superior to acetabulum ii. Insertion: Via quadriceps tendon into tibial tuberosity b. Vastus medialis	Minimum: Correctly identify all four and name origin of Rectus femoris and insertion of all.

	 What are their actions? What is their nerve supply? 	patellar retinacula c. Vastus lateralis i. Origin: Greater trochanter + lateral lip of linea aspera ii. Insertion: Quadriceps tendon + patellar retinacula d. Vastus intermedius i. Origin: Ant + lat shaft of femur ii. Insertion: Quadriceps tendon 2. Extend the knee. Rectus femoris also assists in hip flexion 3. Femoral nerve L2,3,4	
Question 4 Cubital fossa LOA: 1 Introduce: "This image is the LEFT elbow, and this is the LATERAL side"	a) Describe the boundaries of the cubital fossab) Identify its contents in this photo	Superiorly – imaginary line connecting the epicondyles Medially – Pronator teres (flexors of forearm from CFO) Laterally – Brachioradialis (extensors from lat epicondyle) Floor – Brachialis and Supinator muscles Roof – deep fascia/bicip. aponeurosis, subcut fat, skin Brachial a(3) dividing into radial(13) & ulnar (15) arteries. Biceps brachii tendon/aponeurosis(1+2) Median n(9) Radial n (14)– deep between Brachioradialis and Brachialis Posterior interosseous n(11)	Bold required
Question 5 Nerve supply to face LOA: 2	 a) What is the sensory supply of the face? (Prompt: what nerves supply skin sensation on the face?) b) What is the motor supply to facial muscles ?(Prompt: muscles of facial expression) 	Trigeminal nerve branches: Ophthalmic; supratrochlear, supraorbital, infratrochlear, ext nasal, lacrimalline from angle of eye, dorsum nose Maxillary; Zygomatic (temporal, facial), infraorbital, lat. nose Mandibular; auric temporal, buccal, mental Small supply to angle of jaw from great auric Facial nerve, motor root: Emerges from stylo mastoid foramen, and engulfed by parotid 5 motor branches: Temporal (above eyes) Buccal (upper lip) Marginal mandibular (lower lip) Cervical (platysma, neck)	Bold required 3 of 5 branches required

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Haemostasis LOA: 1	In hemostasis, describe the sequence of events at the site of vascular injury	 Transient vasoconstriction by neurogenic and via local secretion of factors eg endothelin Endothelial damage exposes ECM, leads to Platelet adherence, secretion & activation leading to the primary haemostatic plug Tissue factor is exposed, resulting in activation of coagulation cascade and thrombin generation, converting fibrinogen to fibrin leading to secondary haemostasis consolidating the initial platelet plug Polymerised fibrin and platelet aggregates to form permanent plug Counter regulatory mechanisms limit plug to site of injury 	Must state Vasoconstriction Platelets Coagulation cascade Fibrin
	What factors restrict clotting to the site of vascular injury? Prompt: What prevents runaway clotting of the vascular tree?	 Endogenous anticoagulants Antithrombins eg AT III, inhibit thrombin and IXa, Xa, Xia, XIIa Proteins C and S - inactivate Va, VIIIa TFPI (Tissue factor pathway inhibitor) Fibrinolytic cascade activation Plasmin from plasminogen (via factor XII or plasminogen activators) to break down fibrin & interfere with its polymerisation tPA = the most important plasminogen activator 	 Must include concepts of : Endogenous anticoagulants Activation fibrinolysis
Question 2 Fracture healing LOA: 1	How do fractures heal? Prompt: What are the timeframes of these stages? What factors impair fracture healing?	1 Haematoma formation/fibrin mesh - hrs 2 Inflammatory cell influx - days 3 Fibroblast/ Osteoprogenitor cells-procallus 4 Organised haematoma - 1wk, 5 Woven bone , bony callus - 2-3 wks 6 Callus maturation remodelling - 6 wks Inadequate immobilisation, severe displacement, vascular compromise, infection /FBs, poor nutrition, systemic illnesses	Must have reasonable sequence and approximate times, at least 4 components to sequence At least 3

Question 3	Where in the cerebral circulation are	90% near major arterial branch points – Anterior Cerebral A / ACoA	Mention of branch
	saccular (berry) aneurysms commonly	(40%); MCA / AChoroidalA (34%); ICA / PCoA (20%); Basilar A / PCoA.	points and anterior
Subarachnoid	located?	Multiple in 20% – 30% cases at autopsy.	circulation to pass.
haemorrhage	Prompt: At what part of these vessels		
	are they most likely to arise?		
		Increased likelihood with size (> 10mm) – 50% risk of rupture per year.	
	What factors increase the likelihood of	May occur at anytime but in about 1/3 associated with acute increases in	Bold to pass.
	rupture of these aneurysms?	ICP (e.g. straining at stool; orgasm).	
		Acute events (hours to days) – ischaemic injury (stroke) from vasospasm	
	What are the pathological sequelae of	(especially basal SAH).	Two of bold to pass.
	subarachnoid haemorrhage?	Late events (healing process) – meningeal fibrosis and scarring; may lead	
		to obstruction to CSF flow and /or to CSF absorption.	
		Death	
Question 4	What factors predispose patients to	Cardiac factors – Myxomatous mitral valve, calcific aortic stenosis,	Need 4 (2 from each
	infective endocarditis?	bicuspid aortic valve, prosthetic valves, rheumatic heart disease	group)
Endocarditis		Host factors – neutropaenia, immunodeficiency, malignancy, therapeutic	
LOA: 1		immunosuppression, diabetes, alcohol, intravenous drug use, bacteraemia.	
	Which organisms commonly cause	Streptococcus viridans; Staph aureus; Staph epidermidis; enterococci;	Bold plus one other to
	infective endocarditis?	HACEK (Haemophilus, Actinobacillus, Cardiobacterium, Kingella); fungi	pass
	What are the complications of infective	Local – erosion / destruction of underlying cardiac tissue (valve,	1 local and 1 systemic
	endocarditis?	myocardium); abscess formation. Systemic – systemic emboli – infarcts /	
	(Prompt to get each group)	septic infarcts – brain, kidneys, lung, subcutaneous tissues, retina. Other -	
Question 5	What is Sudden Infant Death	glomerulonephritis (immunologically medicated) The sudden death of an infant under 1 year of age which remains	Accurate definition (age
QUESTION 2	Syndrome?	unexplained after thorough investigation and autopsy.	& unexplained nature)
ALTE/SIDS			,
	What risk factors have been identified?	Parental risks- young mum <20, maternal smoking or drug use, low SES,	At least 3 risk factors
LOA: 2		deficient pre-natal care	
		Infant risks- premature, low BW, male, SIDS in sibling, brainstem anomalies.	
		Environment- prone sleeping, soft bedding and co-sleeping,	
		hyperthermia	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	What factors predispose to	Virchow's triad -	Bold 3
Thrombosis LOA: 1	thrombus formation? (Prompt: Give an example of a clinical situation where each factor occurs)	 Endothelial injury Alteration in blood flow Hypercoagulability 	Plus 1 example for each
	Expanding on hypercoagulable states, what are the broad categories and give examples of each type?	Primary (Genetic) Mutations- Factor V Leiden, Prothrombin Increased - factors VIII, IX, XI, or fibrinogen Deficiencies- AT3, Protein C, S	Bold + 2 examples
	9	 Secondary (Acquired) Prolonged bed rest, immobilisation, MI, AF, Tissue injury, prosthetic valves, cancer, DIC, HITS, Anti phospholipid Antibody Cardiomyopathy, nephrotic syndrome, pregnancy, post partum, OCP, sickle, smoking Note often multifactorial 	Bold + 3 examples
Question 2 Septic shock LOA: 1	How do microbes initiate septic shock?	 Interaction with innate cells of immune system- neutrophils. macrophages and monocytes Humoral interaction to activate complement and coagulation path Direct endothelial action End result is mediator release TNF,IL 6,8,10, NO,PAF, PAI-1 	at least 3 to pass
	What are the effects of the mediators on the coagulation pathway?	Microvascular thrombosis, decreased fibrinolysis, DIC	2/3 to pass
	What are the consequent effects on tissues?	Tissue ischaemia, multi organ failure	Either
Question 3 Jaundice LOA: 1	Outline the normal metabolism and elimination of bilirubin?	 Bilirubin production from heme (breakdown of senescent erythrocytes) 2. Binds to serum albumin and delivered to liver. 3. Hepatocellular uptake. 4. Glucuronidation – bilirubin glucuronides excreted into bile. 5. Gut deconjugation – colourless urobilinogens. These and pigment residues excreted in faeces. ~20% urobilinogens reabsorbed in ileum and colon and returned to liver. Small amount of reabsorbed urobilinogen excreted in urine 	three of bold to pass

	What are the common causes of jaundice? (Prompt for bold)	Disorders that affect the production and metabolism of bilirubin: <u>1. Predominantly unconjugated</u> : production (haemolyisis; resorption of blood from internal haemorrhage; ineffective erythropoiesis); \downarrow hepatocyte uptake (drug interference with membrane carrier systems; Gilbert syndrome – some cases); impaired bilirubin conjugation (physiological jaundice of newborn - \downarrow UGTA1 activity; breast milk jaundice - β - glucuronidases; genetic deficiency of UGTA1 (Crigler-Najjar); Gilbert syndrome (autosomal recessive \downarrow UGTA1 activity); hepatitis (diffuse hepatocellular disease eg viral; drugs; cirrhosis). <u>2. Predominantly conjugated</u> : impaired bile flow ; deficiency of canalicular membrane transporters (Dubin-Johnson syndrome; Rotor syndrome)	Bold to pass
Question 4 ARDS LOA: 2	Describe the pathogenesis of ARDS	Initial injury to alveolar capillary membrane (endothelium); acute inflammatory response (neutrophil mediated); results in increased vascular permeability and alveolar flooding; fibrin deposition; formation of hyaline membranes; and widespread surfactant abnormalities (damage to Type II pneumocytes); eventually – organisation with scarring	3 of 4 bold
LUA. 2	What conditions are associated with the development of ARDS?	 Infection (sepsis, diffuse pulmonary infection, gastric aspiration) Physical / Injury (trauma – head, pulmonary, fractures, near drowning, burns, radiation) Inhaled irritants (O2 toxicity, smoke, irritant gases and chemicals) Chemical injury (Heroin, barbituate, acetylsalicylic acid, paraquat) Haematological conditions (multiple transfusions, DIC) Other (pancreatitis, uraemia, cardiopulmonary bypass, hypersensitivity – organic solvents, drugs) 	Need 3 groups (with example from each); must include infection
Question 5 Anaemia	What are the causes of intravascular haemolysis?	-mechanical injury to cells (valves, microthrombi, other physical trauma) - complement fixation (eg transfusion reaction) -toxic injury (eg clostridia), - parasites (eg malaria)	3 causes
LOA: 2	What are the manifestations of intravascular haemolysis? (Prompt: In the blood? In the urine?)	Anaemia, haemoglobinuria, haemoglobinaemia, jaundice, haemosiderinuria	3 manifestations

March 30 Friday Morning Session 3

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	What is an embolus?	A detached intravascular solid/liquid/gas mass that is carried by the blood stream from its site of origin to a distant site .	Bold to pass
Embolism			
	What types of emboli do	Pulmonary	3 examples to
LOA: 1	you know of?	Arterial thromboemboli	pass
		 Fat emboli Air emboli 	
		Amniotic fluid	
	What are the features of	 Associated with long bone fractures, rarely soft tissue injury/burns 	3/5 bold to
	fat embolism syndrome?	Only 10% symptomatic	pass
	Dremet What systems	• Pulmonary insufficiency- SOB, 个RR,个HR	
	Prompt – What systems may be affected in fat	Neurologic symptoms- irritability, restlessness, delirium, coma	
	embolism syndrome?	Anaemia- due to RBC aggregation/haemolysis	
		Thrombocytopaenia- platelet adhesion/aggregation, leads to petechial rash	
Question 2	Describe the process of	a) Formation of a blood clot – immediate	Bold 3 and 2
	healing of an incised skin	b) Neutrophil migration at wound margins – within 24 hours	others = 5
Wound	wound?	c) Formation of granulation tissue (fibroblasts and vascular endothelial tissue). Blood vessels	
Healing	(Prompt: include the	are leaky and proteins and fluid pass into the extravascular space leading to oedema- 24-72 hours	
LOA: 1	timing of these	d) Cell proliferation and Collagen deposition – neutrophils are replaced by macrophages	
207.1	processes.)	between 48 and 96 hours	
		e) Scar formation – leucocytic infiltrate, oedema and increased vascularity disappear; increased	
		accumulation of collagen – second week	
		f) Wound Contraction – formation of myofibroblasts at the wound edges that contract.	
		g) Connective tissue remodelling	
		h) Recovery of Tensile strength – 10% at 1 week to a peak of 70-80% at 3 months	
			To pass:
	What factors influence	a) Local (infection / mechanical eg motion of wound / FB / size, location, type eg incised vs blunt	2 local & 2
	wound healing?	trauma)	systemic
		b) Systemic (nutrition / metabolic status / circulatory status / hormones)	
Question 3	What is cor pulmonale?	Right sided heart failure that is not secondary to left sided heart failure (pure RHF). It can be acute	Bold to pass
C = 1		(eg massive PE) or chronic (eg chronic lung disease).	
Cor			

pulmonale			
	What are the common causes of cor pulmonale?	Diseases of pulmonary parenchyma (COPD; fibrosis; bronchiectasis). Diseases of pulmonary vessels (Primary pulmonary hypertension; recurrent PE; extensive pulmonary arteritis eg Wegener's granulomatosis). Disorders affecting chest movement (marked obesity; kyphoscoliosis; neuromuscular). Disorders causing pulmonary arterial constriction (hypoxaemia; metabolic acidosis; chronic sleep apnoea; altitude sickness). Common feature of all these is pulmonary hypertension.	Bold plus 3 other to pass
	What are the major morphological features of cor pulmonale? (Prompt: what are the organ features?)	Pulmonary congestion is minimal whereas engorgement of the systemic & portal venous systems may be pronounced. Heart: right ventricular hypertrophy and dilatation; leftward bulging of septum. Liver / portal system: congestive hepatomegaly; centrilobular necrosis; congestive splenomegaly Pleura, pericardial and peritoneal spaces: effusions; ascites. Subcutaneous tissues: oedema (dependent and peripheral portions of body; anasarca)	At least three to pass.
Question 4 UTI	What organisms cause acute pyelonephritis? Prompt: what are the most common?	G-ve bacilli (>85%), endogenous organisms E Coli, proteus, klebsiella, enterobacter, strep faecalis Other: staph, fungi, (viruses in immunocompromised and renal transplant patients)	G-ve & 3 organisms pass
	What steps are involved in ascending infection?	5 steps: 1. colonisation distal urethra 2. entry into bladder 3. urinary tract obstruction / stasis of urine 4. vesicoureteric reflux 5. intrarenal reflux	Need to explain the steps clearly
	What are the features of chronic pyelonephritis?	Chronic = chronic reflux or obstruction causes pelvocalyceal damage. Recurrent infections lead to recurrent bouts of renal inflammation and scarring	Bold & concept
Question 5 Chronic Pancreatitis	What are the morphological features of chronic pancreatitis?	Parenchymal fibrosis, reduced number and size of acini with relative sparing of islets of Langerhans. Variable dilation +- blockage of pancreatic ducts. Destruction of exocrine parenchyma and in later stages destruction of endocrine parenchyma. Calcification.	Any 3.
	What are the clinical consequences?	Irreversible impairment of pancreatic function including: Diabetes; Steatorrhea; Malabsorption chronic attack not immediately life threatening but long term outlook poor(50% 20-25 mortality) Disease may be silent. Amylase, lipase may not raise in chronic attack	Any 3

	Pseudocyst	
--	------------	--

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 LOA: 1	Define drug elimination half life	Time required to change the amount of drug in the body by ½ during elimination	Concept required
HALF LIFE	Is there a formula you can use? Prompt: What factors affect half-life? Prompt: Can you explain what that means?	T1/2 = 0.7 x Vd/clearance (0.7 approx log 2)	Both bold to pass
	How does knowledge of a drug's half life help us clinically?	Indicates time to steady state after dose change. 50% after 1, >90% after 4	
Question 2 LOA: 2 PENICILLINS	Describe the mechanism of action of penicillins	Inhibition of cell wall synthesis. Interfere with transpeptidation. Covalently binding to PBP. Important in the cross linkage. Bacteriocidal,. Only kills growing cells.	
	How does resistance to penicillins occur?	 a. Inactivation by beta lactamases b. Modification of target PBPs (Pneumo/entrococci) c. Impaired penetration of drug to PBP; impact on porin channels. Gram negatives d. Efflux pump (gram neg) 	At least 2 including beta-lactamases At least 3 bacteria
	In general, what is the anti-microbial spectrum of penicillin G? Prompt: Could you be specific	Streptococci, meningococci, enterococci, some pneumococci, treponema pallidum, clostridia, non-betalactamase producing staphylococci	
Question 3 LOA: 1 LITHIUM	Describe the pharmacokinetics of Lithium	Absorption; rapid and near complete. peak levels in 30-120min Distribution; total body water Vol.D 0.5 to 0.9L/kg Slow distribution Metabolism; none T ½; @20 hours. Elimination; renal excretion	
	What are some of the drug interactions with lithium	Thiazide diuretics- 25% reduction in lithium clearance Newer NSAID's – similar reductions in clearance Neuroleptics (except clozapine) and antipsychotics- enhancement of extrapyramidal syndromes	
	What are the some side effects of lithium Prompt: What other organ systems effects are there?	Neurological; tremor, confusion, ataxia, dysarthria, new psychiatric symptoms Reduced thyroid function Nephrogenic diabetes insipidis – loss of responsiveness to ADH. Oedema Skin reactions; acneiform eruptions	2 neurologic symptoms

Question 4 LOA: 1 ANTIEMETICS	Name some antiemetics used in the Emergency Department.	Ondansetron (or Granisetron or Tropisetron) Metoclopramide Prochlorperazine	Bold to pass
		Diphenhydramine (or other antihistamines). Meclizine. Hyoscine. Benzodiazepines. Chlorpromazine. Droperidol	
	Compare the mechanisms of action of ondansetron and metoclopramide	Act at different receptors: Ondansetron: Peripheral 5HT3 blockade (vagal and spinal afferents, Reduces sensory visceral output) + Central 5HT3 blockade (vomiting centre and CTZ) Metoclopramide: D2 blockade (CTZ). Increases oesophageal motility. Increases LOS pressure. Increase gastric emptying	Bold to pass
	Describe the potential adverse effects of metoclopramide.	CNS: Restlessness, drowsiness, insomnia, anxiety, agitation – common (20%), esp. elderly Extrapyramidal effects: acute dystonia , akathisia, parkinsonian effects, more likely with higher doses Tardive dyskinesia with chronic dosing	Must mention acute dystonia + one other CNS effect
QUESTION 5 LOA: 1 DRUGS IN AGITATED PATIENTS	List the drug classes which are used in management of acute agitation in the ED <i>Prompt: Can you give some specific examples?</i>	Benzodiazepenes Antipsychotics – Phenothiazines eg chlorpromazine Butyrophenones eg haloperiodol Atypicals eg olanzapine , risperadone Barbiturates – phenobarbital	
	What is the predominant mechanism of action of the atypical antipsychotics.	Serotonin (5HT _{2A}) receptor antagonism Dopamine (D2) receptor antagonism (weaker effect)	
	Describe adverse effects of the atypical antipsychotics	Extrapyramidal reactions - – less common than with older typical antipsychotics Tardive dyskinesia Antimuscarinic effects – dry mouth, urinary retention etc Orthostatic hypotension Weight gain Hyperglycemia Hyperprolactinemia Agranulocytosis (clozapine) Neuroleptic malignant syndrome	

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	In the context of drug-receptor interactions,	High concentrations of full agonists can evoke a maximal	
LOA: 1	what is the difference between a full agonist and	response, but partial agonists cannot evoke maximal	
PARTIAL AGONIST	a partial agonist?	response at any concentration	
	Under what circumstances can a partial agonist	In the presence of a full agonist	
	act as a antagonist? Prompt: Can you use opioids as an example?	Buprenorphine	
Question 2	Describe the mechanism of action of	Inhibition of DNA synthesis. Selective inhibition of bacterial	
LOA: 1	trimethoprim	dihydofolic acid reductase which is required from the step	
TRIMETHOPRIM		dihydrofolic acid to tetrahydrofolic acid. Much less efficient	
		at inhibiting mammalian enzyme.	
	Can you explain why trimethoprim and	Inhibition of sequential steps in same pathway.	
	sulphonamides when used together are	Sulphonamides inhibit dihydropteroate synthetase (PABA to	
	synergistic?	DHFA), the step before that at which trimethoprim acts	
		Reduced cell permeability	
	How does resistance to trimethoprim occur?	Increased production of enzyme DHF reductase	Any 1 of 3
		Alteration in the enzyme with reduced binding of drug	
Question 3	Outline the clinical uses of carbamazepine	Anticonvulsant; partial and generalised tonic-clonic seizures	Anticonvulsant + 1 other use
LOA: 1		Treatment of bipolar mood disorder	
CARBAMAZEPINE		Trigeminal neuralgia	
		Blocks sodium channels	
	Describe the mechanism of its anticonvulsant	Inhibits high-frequency repetitive firing of neurons	
	activity	Presynaptic blocker of synaptic transmission	
		(similar to phenytoin)	
		Ataxia and diplopia, drowsiness (dose related CNS)	
	Outline some of the side effects of	GI upsets and hepatic dysfunction	CNS + one other
	carbamazepine	Erythematous skin rash	
	Prompt: What other organ systems can it effect?	Hyponatraemia and water intoxication	
		Blood dyscrasias, including leukopenia common), and rarely	
		aplastic anaemia and agranulocytosis.	
	Optional : Can you name some drug interactions	Enzyme induction (all anticonvulsants including itself).	
	involving carbamazepine	Valproic acid + phenytoin may inhibit carbamazepine	
		elimination	

Question 4	Describe the different types of insulin used in the	Rapid and short acting	Pass criteria:
LOA: 1	routine management of Type I Diabetes.	Clear soln, neutral pH, contain Zn	
INSULIN	Prompt: Please describe in terms of duration of	rapid onset, short duration	Identify existence of rapid,
	action	e.g. insulin neutral, insulin lispro, insulin glulusine	intermediate and long-acting insulin
		- Intermediate acting Turbid soln, neutral pH, protamine in phosphate buffer (NPH) to prolong action e.g. insulin isophane, insulin aspart protamine	Aware that combination of therapies required to cover both basal requirements and post-prandial periods
	How are these properties used to achieve optimum glycaemic control?	Long acting Clear solution, soluble Slow onset, prolonged action Daily admin mimics basal insulin secretion e.g. insulin glargine, insuline detemir Tight glycaemic control is achieved by a combination of insulins with different durations of action with an aim of	
		replacing the basal insulin requirements (50%) and meal requirements (50%). This is done with combinations of insulins with different duration of actions	
	What type of insulin is used for intravenous infusion and why?	Short-acting regular soluble insulin as it immediately dissociates on dilution and so is able to more precisely delivered.	
	Optional : Describe the principles of operation of a subcutaneous insulin infusion device. PROMPT: Insulin pump.	External open-loop pump for insulin delivery. Delivers individualised basal and bolus insulin replacement doses based on blood glucose monitoring. Programmed by user. Consists of insulin reservoir, program chip, keypad and display screen attached to subcutaneously inserted infusion set.	

Question 5 LOA: 1 DRUGS IN PROCEDURAL SEDATION	List the classes of drugs used in emergency department procedural sedation <i>Prompt: for classes</i>	Benzodiazepenes Dissociative anaesthetics (ketamine) Intravenous anaesthetics (propofol) Inhaled anaesthetics (N2O ; volatile) Opiates (morphine, fentanyl)	4 out of 5
	Describe the elimination pharmacokinetics of propofol <i>Prompt: Why do patients wake up quickly?</i>	Hepatic metabolism producing inactive watersoluble compounds , excreted renally High plasma clearance exceeding hepatic clearance – thus extrahepatic clearance exists – probably via lungs. Termination of effect by redistribution from brain to skeletal muscle (waking after single induction dose at 8-10 mins) "Three compartment model" Short "half – life" making it suitable for infusions – rapid offset.	
	Describe the organ effects of propofol	CNS: sedative/hypnotic – general depression of CNS activity, reduced cerebral blood flow and reduction in ICP. Anti convulsant properties.Nil analgesic effect Cardiovascular effects: hypotension secondary to arterial and venous vasodilatation (reduced preload and afterload) – incr. effect with age and reduced intravascular volume. Some inhibition of baroreceptor reflex leading to small increase in heart rate response only Respiratory effects: respiratory depression incl apnoea. Reduction in tidal volume and rate Reduced response to hypercapnoea and hypoxia Reduction in upper airway reflexes. Other: Antiemetic	One from CNS, CVS + Respiratory
	Describe adverse effects of propofol	Effects related to organ system effects Hypotension Apnoea, respiratory depression Loss of airway reflexes – obstruction and aspiration Pain with injection Allergy – cross reactivity with egg allergy (emulsion) Propofol infusion syndrome (metabolic acidosis & tachycardia)	

ACEM PRIMARY 2012/1 Pharmacology VIVA March 30 Friday Morning Session 3 Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	What factors determine the difference in	Genetic – enzyme level differences	3 of 4 bold to pass
LOA: 1	drug metabolism between individuals?	Diet – induce / inhibit enzymes	
DIFFERENCES IN		Environmental – exposure to enzyme inducers	
DRUG		Age – extremes have decreased enzyme activity	
METABOLISM		or decreased levels of cofactors	
		Sex – increased metabolic rate in males	
		Drug-drug interactions – enzyme induction or	
		inhibition, substrate competition	
		Disease states - hepatic, pulmonary, cardiac,	
		thyroid, inflammatory	
		Liver size & function	
		Circadian rhythm	
		Body temperature	
	What is meant by "enzyme induction"?	Drug causes an increased rate of synthesis or	Bold to pass
	Prompt: What effect does it have on	decreased rate of degradation of enzyme causing:	
	metabolism?	accelerated substrate metabolism	
	Prompt: What effect does this have on	decreased pharmacological action of the inducer	
	the pharmacological action of the drug?	or a co-administered drug.	
Question 2	Describe the metabolism of	Rapidly absorbed, peak conc at 30-60 minutes	3 of 5
LOA: 1	paracetamol?	Slightly PP bound	
PARACETAMOL	Prompt: Does this change in toxic doses?	Partially metabolised by hepatic MEs to	
		paracetamol glucuronide and sulphate (inactive)	
		<5% excreted unchanged	
		Half-life is 2-3 hrs	
	What is the toxic dose and how does this	150-200mg/Kg or >7g in adult. Conjugation AAs	Reasonable approximation.
	cause toxicity?	(gluthathione in particular) used up, metabolised	Must have reasonable
		to toxic metabs NAPQI. Toxic to liver / kidneys.	understanding of how toxicity is caused
	What are the clinical manifestations of	GIT effects: Hepatic impairment. N/V, diarrhoea,	Hepatic + one other
	toxicity?	abdo pain, dizzy, disorientation	
		Renal failure	

Question 3	What B-receptor types are there?	B1, B2 + B3	Need B1 + B2
LOA: 1 SELECTIVE B2 AGONISTS	What cellular processes do B-agonist - B- receptor coupling initiate?	Activation of all 3 receptor types results in stimulation of adenylyl cyclase and increased conversion of ATP to cAMP. Mediated by stimulatory coupling protein (Gs) via GDP and GTP	Need adenylyl cyclase
	What are the clinical uses of B2 selective agonists?	Respiratory , uterine and vascular smooth muscle relaxation Skeletal muscle K+ uptake	Need respiratory bronchodilation + one other
Question 4 LOA: 1 WARFARIN	What is the mechanism of action of warfarin?	Warfarin inhibits reduction of inactive Vit K epoxide (KO) to active hydroquinone (KH ₂) form. Blocks γ-carboxylation of glutamate residues in prothrombin (Factor II) and factors VII, IX and X ,as well as endogenous anticoagulant protein C and S.	Need to know role of vitamin k
	Why is there a delay in the onset of action of warfarin?	8-12 hr delay due to partially inhibited synthesis and unaltered degradation of 4 vit k dependent clotting factors and depends on degradation ½ life in circulation eg factor VII- 6 hrs, IX 24-hrs, X - 40 hrs and II- 60 hrs)	Need to have some idea of delay in onset
	What pharmacological agents are used in the reversal of warfarin?	Vitamin K. FFP. Prothrombin Complex. Recombinant FVIIa	
	Optional : Describe the mechanisms of drug interactions with warfarin	Pharmacokinetic: Enzyme induction + inhibition. Altered protein binding Pharmacodymanic: Synergism. Competitive antagonism (Vitamin K)	3 required

Question 5	List the classes of drugs used for the	B-blockers	3 of 5
LOA: 1	management of AF in the emergency	Ca-channel blockers	
DRUGS IN AF	department	Cardiac glycosides	
SOTALOL		Class 1c antiarrhythmics	
		Class 3 antiarrythmics	
	Describe the pharmacodynamics of	Non-selective beta blocker, Class II	Need class II + III
	sotalol:	Prolongs plateau phase Class III	
	List the main side effects	Pro-arrthymic- Esp prolongation of QT and Torsades CCF Asthma, AV blockade	Prolonged QT + 1 other
	What drug interactions with Sotalol prolong the QT? <i>Prompt: What other interactions can</i> <i>occur with sotalol?</i>	Drugs which prolong QT- phenothiazines, Macrolides, eg erythromycin, quinolones antidepressants,- Increased risk of Torsades Drugs which cause hypokalaemia hypomagnesaemia increase risk of Torsades Myocardial depressant drugs- increased LVF Calcium channel blockers, class 1a antiarrythmics, may increase refractory time and contraction	2 examples

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1.1 Describe what happens to Cardiac Output during exercise. Prompt: By what mechanisms?	Increases (CO= SV x HR) ↑venous return and hence ↑end diastolic volume, ↑myocardial contractility, so ↑stroke volume. ↑ sympathetic drive and heart rate	Increases + one mechanism stroke vol + one mechanism heart rate
	1.2 What are the local mechanisms that maintain a high blood flow in exercising muscles?	\downarrow in tissue PO ₂ , \uparrow tissue PCO ₂ , and accumulation of K ⁺ and other vasodilator metabolites, \uparrow temperature in active muscle	Need 3 to pass.
Question 2	2.1 In what forms is carbon dioxide transported in the blood?	 Dissolved. As carbamino compounds with proteins, especially Hb. Hydrated in red cells – H⁺ is buffered and 70% of HCO₃⁻ enters the plasma. 	Two of three to pass.
	2.2 Please draw the carbon dioxide dissociation curve for normal arterial blood.Prompt: "Draw a graph showing the relationship between the pressure of carbon dioxide and the total carbon dioxide content in arterial blood."	Figure 6-6. CO ₂ dissociation curves for blood of different O ₂ saturations. Note that oxygenated blood carries less CO ₂ for the same PCO ₂ . The <i>inset</i> shows the "physiological" curve between arterial and mixed venous blood.	Reasonable shape of the curve indicating the near linearity in the physiological range. Prompt if necessary.
	2.3 Where will the curve lie for venous blood and why??Prompt: "Does the curve move up or down and why??"	 The graph moves upwards indicating greater CO₂ content per unit pressure. Deoxygenated haemoglobin binds more H⁺ and forms more carbamino compounds than oxyhemoglobin so venous blood carries more CO₂ than arterial blood. This is known as the Haldane effect. 	The candidate must understand that venous blood is able to carry proportionately more CO ₂ than arterial blood.

Question 3			
	3.1 By what mechanism is H ⁺ secreted in the distal tubules and collecting ducts of the kidney?	ATP driven proton pump. Aldosterone acts on this pump to increase H^+ excretion. Abundant carbonic anhydrase in the cells numerous tubulovesicular structures. Pumps in the vesicles $H - K^+$ ATPase	ATP driven proton pump
	3.2 In H ⁺ secretion, what is the limiting urine pH?	A urine pH of 4.5 is the maximal H^+ gradient against which transport mechanisms can secrete H^+	рН 4-5
	3.3 Describe the principal urinary buffers and what is their role?	HCO_3 buffer system particularly in the proximal tubules $HPO_4^{2^-}$ in the distal tubules NH_3 in the proximal and distal tubules	2 examples + increased capacity to excrete H+
Question 4	4.1 What is normal serum osmolality?	~ 290mOsmol/L	Within the range 280-300
	4.2 What substances contribute to serum osmolality?	Principally (all but 20mOsmols) the ions (Na, K, Cl, HCO3). Rest is other cations & anions, urea, glucose. Much less so proteins (due to high MW). Possibly alcohols or mannitol.	Na+, Cl- and one other
	4.3 How does plasma differ in composition to intracellular fluid?	Intracellular K+ and proteins high, many more 'miscellaneous' phosphates Na+, Cl & HCO3 low, (Figure 1-1 page 3)	Na, K, protein differences
Question 5	5.1 What is the main hormonal factor that stimulates the release of cortisol from the adrenal cortex?	Adrenocorticotropic hormone (ACTH)	
	5.2 What factors determine the rate of ACTH secretion?	Increased by stress (pain, emotional), drive for circadian rhythm through the hypothalamus via release of CRH (corticotropin releasing hormone)	
		Inhibited by circulating glucocorticoids and afferent from baroreceptors	
	5.3 What happens to ACTH levels after prolonged treatment with high doses of glucocorticoids is stopped abruptly?	Slowly increases over weeks (the pituitary may not be able to secrete normal amounts of ACTH for as long as a month. Presumed to be secondary to diminished ACTH synthesis)	
	5.4 How can this be avoided?	This can usually be avoided by slowly decreasing the dose over a long period of time.	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1.1 What local factors can cause vasoconstriction or vasodilatation?	Vasodilatation: \uparrow CO2, \uparrow lactate, \uparrow adenosine, \uparrow local temp; \downarrow O2 or \downarrow pH	At least 4 to pass, and at least one in each group
LOA: 1		Vasoconstriction: \downarrow local temp, autoregulation.	each group
	1.2 What is autoregulation in relation to blood flow?	 Autoregulation: blood flow remains constant by compensating pressure changes with peripheral resistance. 1) Myogenic: as blood pressure rises, muscle fibres in the blood vessels contract. The muscles correspond to the wall tension which is maintained at fairly constant level. Wall tension is determined by the radius of the blood vessels (pressure x radius). So rise in pressure, leads to a reduction in the radius of the blood vessel. 2) Metabolic: active metabolites cause local vasodilatation. 	Need bold & some details to pass.
Question 2 LOA: 1	2.1 What factors determine the work of breathing?	 Elastic forces of the lungs and chest wall Viscous resistance of the airways and tissues 	Must understand both to pass. Prompt if necessary.
	2.2 What variables affect elastic workload?2.3 What variables affect viscous resistance?	 Larger tidal volumes increase elastic workload. Elastic workload is increased by reduced compliance due to: Lung volume - a person with only one lung has halved compliance. Slightly lesser during inflation than during deflation. Increased tissue mass - fibrosis or pulmonary congestion or chest wall restriction. Loss of surfactant Higher respiratory rates increasing flow rates Decreased airway radius due to: Lower lung volumes; Bronchoconstriction; Increased air density (eg SCUBA diving) Increased air viscosity 	Must understand both major points Must give at least two examples to pass.

Question 3	3.1 What are the essential features of the loop of Henle countercurrent multiplier?	High permeability of the thin descending limb to water (via aquaporin-1) and active transport of Na ⁺ and Cl [−] out of the	Either version
LOA: 1	or hene countercurrent multiplier:	thick ascending limb which is not permeable to water.	
		A system in which Na K 2Cl are actively transported, and the inflow runs parallel to, counter to, and in close	
		proximity to the outflow for some distance	
	3.2What is the role of urea in the countercurrent mechanism?	Contributes to the osmotic gradient in the medullary pyramids	Osmotic gradient
	3.3 How does urea reach the interstitium?	Transported by urea transporters, by facilitated diffusion Amount of urea depends on the amount filtered which is influenced by dietary protein	Facilitated diffusion
Question 4	4.1 Describe the body's response to cold?	shivering, hunger, 个voluntary activity, 个NA, A,	Give 4
LOA: 1		\downarrow heat loss, curling up, behaviour change, cutaneous vasoconstriction, horripilation	
	4.2 Outline the pathogenesis of fever.	Toxins from infective agents act on monocytes,	EPs indirect action on hypothalamus
		macrophages and Kupffer cells to produce cytokines which act as endogenous pyrogens (EPs),	to reset
		also IL-18, IL-6, 8-IFN, ɣ-IFN, TNF act on the OVLT, which in	
		turn activates pre-optic hypothalamus through local release of PGs.	
Question 5	What is the sequence of events in skeletal muscle excitation contraction coupling?	Discharge of motor neuron.	Need bold to pass
LOA: 1		Release of transmitter (acetylcholine) at motor end-plate.	
		Binding of acetylcholine to nicotinic acetylcholine receptors.	
		Increased Na+ and K+ conductance in end-plate membrane.	
		Generation of end-plate potential.	
		Generation of action potential in muscle fibers.	
		Inward spread of depolarization along T tubules.	
		Release of Ca2+ from terminal cisterns of sarcoplasmic reticulum and diffusion to thick and thin filaments.	
		Binding of Ca2+ to troponin C, uncovering myosin-binding sites on actin. ATP dependent	
		Formation of cross-linkages between actin and myosin and sliding of thin on thick filaments, producing movement.	

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	1.1 Describe the factors affecting Cardiac Output	CO=SVxHR	Bold to pass + 2 mechanisms from
		SV related to contractility, preload and afterload,	each SV and HR
LOA: 1		HR controlled by intrinsic rate, autonomic, exogenous	
		factors, heat, thyroid	
	1.2 What are the physiological responses to	\downarrow venous return, stimulation of baroreceptors , inc	Bold to pass
	moderate blood loss?	catecholmine release, ↓ renal blood flow – activation of renin angiotensin	
		system	
		fluid shifts, hepatic synthesis of proteins, inc RBC production	
Question 2	2.1 What are the effects of exercise on the	Gas exchange:	One effect from each bolded section
Question 2	respiratory system?	• \land	and at least six to pass.
LOA: 1		and production and excretion of CO_2 (VCO ₂) -	
		increases by 10-20 times;	
	Prompt(s): "What are the effects on:	○ ↑Lung diffusing capacity due to ↑diffusing capacity	
	gas exchange; OR	of the membrane and the pulmonary blood volume;	
	ventilation; OR	$\circ \mathbf{\downarrow}$ Ventilation –perfusion inequality;	
	pulmonary blood flow."	Ventilation:	
		 个Respiratory rate; 	
		$\circ \downarrow$ Functional residual capacity (FRC);	
		 个Tidal volume (TV); 	
		 个Minute ventilation. 	
		Pulmonary blood flow:	
		 Distension and recruitment of pulmonary vessels 	
		increases total cross-sectional area of the pulmonary	
		vasculature; ○ 个Total pulmonary blood volume;	
		 	
		 ↓Pulmonary vascular pressures, ↓Pulmonary vascular resistance. 	
		 Other respiratory effects: 	
		 ○ ↑Respiratory exchange ratio (R) from 0.8 to 1.0 due 	
		to carbohydrate metabolism and may exceed 1.0 due	
		to anaerobic glycolysis;	
		\circ The Hb-O ₂ dissociation curve shifts to the right in the	
		tissues and back to the left in the lungs;	
		 Additional capillaries open in peripheral tissues; 	
	2.2 What changes occur in blood gases during	Arterial blood gases are little affected by moderate	Basic understanding of the effects on
	exercise?	exercise but at high workloads pH falls due to lactic	blood gases.
		acidosis, PaCO ₂ often falls to compensate for the	
		acidosis and PaO ₂ rises;	
		• Arteriovenous pH, PaO ₂ and PaCO ₂ differences increase.	

Question 3	3.1 Describe the micturition reflex.	Spinal reflex, voluntary facilitation/inhibition from the	Need bold to pass –
		higher centres. Micturition centre in the brain stem.	Innervation , sympathetic –
LOA: 1		Bladder innervation - sympathetic L1,2,3;	inhibitory, parasympathetic-
		parasympathetic S2,3,4; somatic S2,3,4.	excitatory.
		$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Bladder distention, excitation of the mechanoreceptors, afferent projection to the brain stem and efferents via sympathetic, parasympathetic and somatic nerves.
		EFGUER 3-20 Innervation of the bladder. Dashed lines indicates the possess when would near the been found have	cystogram for additional marks
		Bladder muscle smooth and plastic (explanation) Initial urge at 150mls, fullness 400 mls. Detrusor muscle contracts. Perineal muscles/external urethral sphincter relax.	Plastic – tension initially produced by filling (distension) is not maintained. P = $2T/R$ as T increases so does R, i.e.
		In females aided by gravity; in males contraction of bulbocavernous muscle	filling and distension therefore P remains constant
Question 4	4.1 What factors stimulate glucagon release?	Hypoglycaemia; increased sympathetic drive to pancreas; vagal stimulation; protein load; amino acids oral or IV	Must give hypoglycaemia + 2 others
LOA: 1		infusion; exercise; stress; starvation; CCK; gastrin; cortisol; theophylline.	
	4.2 What are the physiological effects of glucagon?	Gluconeogenesis ; glycogenolysis (not in muscle); lipolysis; ketogenesis; calorigenic – through hepatic deamination of amino acids; +ve inotropic effect in large doses; stimulates	Gluconeogenesis + 1 others
		secretion of GH, insulin and pancreatic somatostatin.	
Question 5	5.1 What is clonus?	Regular, repetitive, rhythmic contractions of a muscle subjected to sudden, sustained stretch.	Bold to pass
LOA: 2		Subjetted to Sudden, Sustained Stretch.	
	5.2 Why does ankle clonus occur with upper motor neuron lesions?	Loss of descending cortical input to inhibitory neurons called Renshaw cells, and therefore loss of inhibition of antagonists , resulting in repetitive sequential contractions of ankle flexors and extensors.	
	5.3 What are the components of the stretch reflex?	Sensor, afferent nerve, Monosynaptic at spinal level, efferent nerve, effector	

Candidate Number.....

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Bone Bones of the foot LOA: 2	Identify the bones of the tarsus and foot	Talus – body, neck, head, trochlea Calcaneus – tuberosity ,Navicular – tuberosity, Cuboid Cuneiforms – medial, intermediate & lateral Metatarsals - 1-5 Phalanges – prox, middle & distal	Name all bold
	What are the major dorsiflexors of the foot and where do the attach	Tib anterior – base 1 st met, med cuneiform EHL – middle & distal ph EDL – distal ph F Tertius – base of 5 th met	3 of 4
Question 2 Xray Elbow LOA: 1	Identify the bony features on this XRay	Medial/lateral epicondyles, capitellum, olecranon, radius- head/ neck, olecranon fossa, coronoid fossa, trochlea, proximal radio-ulnar joint, coronoid process of ulnar	6 to pass
	What factors determines the stability of the elbow joint?	Bony factors-shape of trochlea /olecrannon fossa Joint capsule-fibrous joint capsule weak Ligaments- radial collateral ligament- lateral epicondyle and blends with the annular ligament of the radius (holds the radial head in the radial notch of the ulnar). Medial ulnar collateral ligament (3 bands) from medial epicondyle to the coronoid process and olecrannon of the ulnar	3 of 4 bolded Prompt – what are the ligaments of the elbow jt
		Muscles- biceps, brachialis, (BR) , triceps RCL and UCL and annular ligament	

Question 3 Photo Extracranial facial	Name the branches of the facial nerve and indicate their position in the photo	Forms parotid plexus in gland with 5 branches 5 Buccal 15 Marginal mandibular, 25 Temporal, 27 Zygomatic , cervical (not seen)	4 of 5
nerve	What is its main function?	Motor nerve to muscles of expression + digastric, stylohyhoid & stapedius	Prompt if necessary by Bold to pass
	What else does it supply?	taste anterior 2/3 tongue, skin close to external acoustic meatus, lacrimal gland, sublingual and submandibular glands	Must note one
Question 4 Model Posterior	Identify the muscles of the posterior compartment of the leg?	Superfical – gastroc, soleus , plantaris Deep: Popliteus, FHL , FDL , Tibialis post	1 superficial, 3 deep
compartment of leg	What is the nerve supply of these muscles?	b) Tibial branch of sciatic nerve	Must name nerve
	Using the model describe the course of this nerve in the leg?	c) Formed at apex of popliteal fossa by bifurcation of sciatic Runs vertically in pop fossa with pop artery, passing between heads of gastroc and deep to tendinous arch of soleus Runs inferiorly on tib posterior with post tib vessels Divides into medial and lateral plantar nerves under flexor retinaculum	Comes from sciatica and terminates as plantar nn
Question 5: D iscussion Superior mediastinum LOA: 2	Describe the vascular structures which lie in the superior mediastinum	Aorta Asc – technically in inf mediastinum. A rch – extends superiorly, posteriorly and left before heading inferiorly. Branches – BC trunk (which becomes RSC and RCC), L CC L SC Veins – L & R IJV and SCV each unite to form L&R BC vein. LBCV passes anterior to Ao arch/branches to meet RBCV and form SVC	Name all 3 branches of Ao arch & formation of BCVs Prompt (may well be needed!) Describe the arch aorta Describe the great veins in the upper chest Would you like to draw this?
	Can you name the other structures which lie in the sup mediastinum	Thymus, Vagus nerves (R give R rec laryngeal looping around RSC art, phrenic nerves, trachea, oesophagus	Bonus pts

·

ACEM PRIMARY 2012/2 Anatomy VIVA A

.

.

Afternoon Session Z Candidate Number......

AGREED MARK.....

.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	Identify the anatomical landmarks of this	Glenoid, spine, supra/infra spinus fossae, subscap fossa,	Correct side and 6 of 7 of
Bones	bone	coracoid and acromion processes	those in bol d
Scapular		Suprascap notch, supra/infraglenoid tubercles, inf angle,	
LOA: 1		med/lat border	And 2 of the rest
	Demonstrate the muscular attachments on the posterior surface	Superior - Lev scap, inf belly o-h, biceps/coracobra Medial – Lev scap, rh min/maj, lat dorsi Lateral – long hd triceps, teres min/maj, lat dors Supraspinatus and Infraspinatus Spine - Trapezius (sup) and Deltoid (inf)	3 of 4 in bold plus 3 others
	What are the muscles involved in ABduction	Intitiated by supraspinatus, then deltoid	
	of the shoulder joint		Must know deltoid
Question 2 XRAY Knee, extra capsular and intra-articular ligs LOA: 1	Indentify bony structures are shown on this x-ray?	Femur – condyles (medial & lateral), epicondyles (medial & lateral), Adductor tubercle Tibia – condyles (medial & lateral), tibial plateau, intercondylar eminence with intercondylar tubercles (medial & lateral) Fibular – head with apex, neck Patella	All bold plus 6 others
	What factors stabilise the knee joint	 Strength & actions of surrounding <u>muscles</u> and their tendons – most impt quadriceps femoris, esp inferior vastus medialis & lateralis Ligaments connecting femur & tibia - Cruciates & collaterals (Most stable position = erect extended knee – articular surfaces most congruent, Cruciates and collaterals taut and jt splinted by many tendons) 	Must ID muscle groups and all 4 main ligs
	Describe the attachments of the cruciate ligs	ACL attaches ant and runs up & laterally, PCL opposite	Must identify A/P tib attachments

.

Question 3 Photo	What structures can you identify in this image?	Median nerve, FCR, BR, FCU, FDS, FDP, ulnar nerve, ulnar artery, lumbricals, thenar muscles-APL, APB, FPB	Median nerve plus 4 muscles to pass
Median nerve in hand LOA: 1	What are the attachments of the flexor retinaculum and what does the carpal tunnel contain?	Boundaries: roof- flexor retinaculum, floor-scaphoid & trapezoid laterally, pisiform and hook hamate medially Contents: Median nerve, FDP, FDS, FPL, FCR	3 of 4 flex ret attachments and 4 of 5 contents
	Describe the median nerve supp ly in the hand	Sensory- palmar-thumb and index and middle fingers, dorsal surface- distal aspect thumb, index, middle and half ring fingers Motor- LOAF muscles (lat 2 lumbricals, OP, APB, ,FPB)	Both motor & sens to pass
Question 4 Model Lower limb - buttock region LOA: 1	The gluteus maximus has been removed. Please identify the main structures seen here	Sciatic nerve Piriformis Gamelli – sup/inf Obt internus Gluteus medius Ischial tuberosity/greater troch Quadratus femorus, obt ext	2 bold and 2 others to pass
	Can you demonstrate the course of the sciatic nerve and name the muscles that it supplies in the thigh	Muscles of the posterior compartment of the thigh - Common fibular part – supplies short head biceps femoris - Tibial part – supplies the rest, namely; Long head biceps femoris Semitendinosus Semimembranosus Hamstring portion of adductor magnus	2 of 4 muscles and nerve is deep to hamstrings and bifurcates to named terminal branches
Question 5 Discussion Posterior abdomen, retroperitoneal	Describe the course and branches of the abdominal aorta	aortic hiatus of diaphragm at T12 Ends at bifurcation to common iliac aa at L4 Branches: - Coeliac (T12), SMA (L1), IMA (L3); Suprarenal (L1), renal (L1), gonadal (L2); Subcostal (L2), Inferior	3of bold, 1 of non-bold
compartment LOA: 2	What is the relationship of the IVC to the aorta	phrenic (T12), Lumbar (L1-L4) (2 of minor branches) IVC: lies posterolateral and to the R. Leaves abdomen through caval opening of diaphragm at T8 Drains from lower limbs and non-portal blood Tributaries correspond to paired vessels of Ao	Behind and to the R

•

.

. . .

ACEM PRIMARY 2012/2 Anatomy VIVA Morni

•

•

Morning Session 3

.

Candidate Number......

AGREED MARK

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1: Bone Clavicle LOA: 2	a) Identify and describe the features of this bone <i>Prompt- what other bones does it articulate</i> with?	Name and side bone Medially- sternal end, articulates with manubrium Laterally- articulates with acromion Inferiorly-conoid tubercle and trapezoid line, for coracoclavicular ligament; subclavian groove; Impression for the costoclavicular ligament	All bold and 3 other features
	b) What structures stabilise the acromioclavicular joint Prompt – what ligaments?	Ligaments of the joint Acromioclavicular ligament Corocacoclavicular ligament – conoid and trapezoid components	Name both ligaments
Question 2 Xray Ankle LOA: 1	1. Identify the bony features on this xray	Fibula/lateral malleolus Tibia/medial malleolus Talus head, neck, body Navicular, Calcaneus, metatarsals	Bold to pass
	2. Please describe the ligamentous attachments of the ankle joint	3 lateral ligaments – anterior talofibular (weak) - post talofibular (runs med, strong) - calcaneofibular (round cord, passes post/inf from tip of fibula)	Bold plus 2 out of 3 lateral ligaments named
		1 Medial ligament – deltoid ligament – medial malleolar attachment fans out to ant/post talus, calcaneus and navicular	Bold to pass
Question 3 Photo Femoral artery LOA: 1	Using this photograph describe the course and relationships of the femoral artery Prompt	Continuation of external iliac A., enters femoral triangle deep to midpoint of inguinal ligament (midway between ASIS and pub tub) lateral to femoral vein, posterior/ deep to fascia lata, anterior / lies on (1 of 2) iliopsoas and pectineus, medial to femoral nerve. Fem artery continues down thigh deep to Sartorius and pass through adductor canal and becomes popliteal art at adductor hiatus	All bold

.

,

.

	Describe the branches of the femoral artery Prompt: what branch supplies the head of	Profunda femoris ("deep artery of thigh"!) branches off post-lat in triangle to supply thigh, passes behind add longus. Gives med and lat cx fem arteries. Med cx fem supplies NOF 4 branches anterior part in fem triangle (superf epig,	Profunda and 1 other.
	femur	superf cx iliac, superf and deep external pudendal)	
Question 4 Model Extraocular muscles LOA: 1	Identify the muscles responsible for eye movement and describe their function	Supr (elev, add), medial, inferior (dep, add), lateral rectus Superior oblique (dep, abd) and inf (elev, abd) oblique.	Ali bold
	What is the nerve supply to these muscles? What are the effects of an oculomotor nerve palsy?	Oculomotor (III) N to all, except Abducent (VI) N (Lat Rectus) and Trochlear (IV) to Supr oblique. Dep and Abd – dilated pupil, ptosis.	3 rd N and one other to pass
Question 5 Discussion Lungs LOA: 2	Can you describe the surface anatomy of the lungs and pleura?	R Lung- Apices of L & R lung begin in supraclavicular fossa Lungs and visceral pleura run parasternal to 6th costal cartilage – then pass laterally to MCL 6th rib , MAL 8th rib, SL at 10th rib in contrast to parietal pleura which is at mid-clavicular line at 8 th CC, 10 th rib at mid-axillary	
Page 199 Moore 6th		line, 12 th rib at scapular line Oblique fissure – spinous process T2 posteriorly – to 6 th costal cartilage anteriorly Horizontal fissure R extends from oblique fissure at level of 4 th rib & costal cartilage	Prompt if necessary
	What are the anatomical structures to consider when inserting a lateral chest tube?	Above the rib below to avoid neurovascular bundle The level 5th or 6 th Intercostal space to above diaphragm Ant or Mid ax line to avoid long tx nerve posteriorly	2 of 5 bold

•

ΤΟΡΙϹ	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Q1 Hyperplasia	1. What is hyperplasia?	Hyperplasia is an increase in the number of cells in an organ/tissue, usually get increased mass of organ/tissue	Bold to pass
LOA: 1	2. What are the causes of hyperplasia?	 a. Hormonal effects – reversible with withdrawal of hormonal stimulation b. Tissue damage or resection - compensatory hyperplasia c. Growth factors - pathological hyperplasia d. Increased workload (muscle) - as for hypertrophy 	2/4 required to pass 1 physiological and 1 pathological cause to pass
	3. Give some examples of hyperplasia Prompt: can you give me a physiological/pathological example?	Physiological: female breast at puberty and during pregnancy, partial hepatectomy, Pathological: endometrium – hyperplasia, dysfunctional uterine bleeding; BPH; Papilloma virus	
Q2 Reperfusion Injury	1. What is reperfusion injury?	It is when reperfused tissues sustain loss of cells in addition to the cells that are irreversibly damaged at the end of ischaemia.	Broad concept expressed
LOA: 1	2. What are the mechanisms of reperfusion injury?	 a. Reactive O2 and N species produced from incomplete reduction of the incoming O2 by damaged mitochondria in parenchymal and endothelial cells b. Inflammation – increased cytokine production and adhesion molecule expression by hypoxic cells recruits inflammatory cells (neutrophils) causing further injury c. Activation of complement. IgM Abs may deposit in ischaemic tissues - complement binds and activate – further injury and inflammation 	Concept of 2 of 3 bolded
Q3 Heart failure	1. What are the major causes of heart failure?	Ischaemic heart disease, Valvular heart disease, Hypertension, Cardiomyopathy, Fluid overload,	2 Bold and one other3 to pass
LOA: 1	2. What pathological processes can occur in the myocardium in heart failure?	Infarction, Ischaemia of myocardium Calcification, Hypertrophy of cardiac myocytes, interstitial fibrosis	2 to pass
	3. What are the pathological changes in the liver caused by heart failure?	Nutmeg liver, Centrilobular necrosis (results from central hypoxia), Centrilobular fibrosis =cardiac sclerosis (due to long standing RHF. Cardiac cirrhosis in extreme cases.	Congestion/oedema leading to fibrosis or necrosis

Thurs AM Q4 Acute meningitis	1. What are the types of meningitis? Prompt: What other type?	Infectious meningitis: acute pyogenic, aseptic (inflammatory) viral, parasitic, chronic (TB) chemical meningeal carcinomatosis	Bacterial, viral + 1 other
LOA 2	2. What bacteria cause meningitis in different patient groups?	Neonates: E. Coli; Gp B Strep Infants: HIB (less with immunisation) Strep Young adults: N. meningitidis Elderly: Strep pneumoniae; Listeria Immunosuppressed: Klebsiella; anaerobe;	3 bacterial causes including N. meningitidis in right age range
	3. How do the CSF findings differ between bacterial and viral meningitis?	BACTERIALVIRALIncreased pressureMay be normal/slight incCloudy or purulentOften clearIncreased white cellsLess increase white cells- neutrophils- lymphocytesRaised proteinOnly moderate increaseReduced glucoseNearly alwaγs normalBacteria on smear(PCR)	White cell differences x2 + 1 other
Q5 Cholecystitis LOA 2	 Describe the pathogenesis of acute cholecystitis Prompt: what is the pathogenesis of acute calculous cholecystitis? Prompt: What are the risk factors for acalculous cholecystitis? What is the role of bacterial infection in acute cholecystitis? 	 Disruption of protective mucous layer, bile salt detergent action -> irritation and inflammation (occurs in absence of bacterial infection initially) 90% due to gallstone obstruction of neck or cystic duct; 10% acalculus cholecystitis Acalculous - Occurs in severely ill people, thought to be due to ischaemia (risk factors septic shock, immunosuppression, diabetes) burns, trauma Often late 	Concept and gallstones and acalculous to pass. Recognition of immunosuppression or critical illness to pass. Initial chemical irritation then bacterial superinfection.

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Q1 Metaplasia LOA 1	 What is metaplasia? Describe some examples What are the possible outcomes of metaplasia? 4. 	 Replacement of one normal cell type with another normal cell type; can be adaptive or pathological. Columnar to squamous (respiratory-chronic irritation eg smoking; excretory ducts due to stones eg salivary, bile). Squamous to columnar (Barrett oesophagus). Connective tissue (myositis ossificans). Malignant transformation, reversibility/resolution, ongoing 	Correct definition and 2 examples to pass 2 to pass
Q2 Mechanisms of Cellular Injury	1.? What happens inside cells when they are injured? Prompt: mechanisms of cell injury	1. ATP depletion, mitochondrial damage, calcium influx, accumulation of free radicals or ROS, membrane damage, DNA/protein damage	3/6
LOA 1	2. What is a free radical?	2. Chemical species that have a single unpaired electron in outer orbit eg reactive oxygen species: superoxide, hydrogen peroxide, hydroxyl, ONOO- peroxynitrite	Principal & one example to pass
	3. What are the pathologic effects of free radicals? <i>Prompt: At a cellulor level.</i>	 3. Overall can cause necrosis or apoptosis or can stimulate production of degrading enzymes Directly can cause: Lipid peroxidation (plasma or organelle membrane damage) Oxidation of proteins (affect protein structure eg enzymes) DNA lesions (breaks in DNA or cross-linkages) 	Necrosis & 1/3 bolded effects
Q3 Staph infections LOA: 1	1. Describe the virulence factors of Staph aureus. What infections do the different species of Staphylococci cause?	 a. Surface proteins involved in adherence – expresses receptors for fibrinogen (and others) to bind to host endothelial cells. b. Secreted enzymes that degrade proteins (promoting invasion and destruction) e.g. lipase degrades skin lipids associated with ability to produce abscesses c. Secreted toxins that damage host cells alpha toxin – membrane depolarisation/damage; beta toxin – sphingomyelinase; Exfoliative A & B toxin; Superantigens – TSS and food poisoning 	2/3 bolded sections including toxin
	2. Prompt: Name the Staphylococcal species	 S. aureus – skin, pneumonia, osteomyelitis etc S. epidermidis – opportunistic eg prosthetic valves S. saprophyticus – UTI in women 	2 of the 3 bolded

Thurs PM Q4 Aortic dissection	1. What are the risk factors for aortic dissection?	Hypertension; Connective tissue disease (Marfans, Ehlers-Danlos); latrogenic (eg coronary angiography); Pregnancy , Age	Bold and one other.
LOA: 2	2. Describe the pathogenesis of aortic dissection?	Medial weakness due to underlying cause, medial hypertrophy of vasa vasorum, intimal tear, blood flow dissects the media resulting in medial haematoma. Cystic medial degeneration	
	3. What are the complications of aortic dissection?	Depends on type. Both: rupture. Type A: dissects to aortic root involving coronary ostia (myocardial ischaemia/infarction), pericardial tamponade. Dissects into great vessels leading to cerebrovascular accident. Type B: dissects into renal, mesenteric, spinal and distal arterial tree causing ischaemia/infarction.	At least four complications.
Q5 Thrombocytopaenia LOA: 1	1. What are the causes of thrombocytopaenia?	 Decreased production of platelets Generalised diseases of bone marrow [Aplastic anaemia (congenital / acquired); Marrow infiltration : leukaemia/cancer] Selective impairment of platelet production [Drug induced (alcohol, thiazides, cytotoxics); Infections (measles, HIV)] Ineffective megakaryopoieis [Megaloblastic anaemia, Myelodysplastic syndromes ,parox noct Hburia] Decreased platelet survival Immunological destruction [Autoimmune (ITP, SLE); Iso immune (post transfusion, neonatal); Drugs (quinidine, heparin, sulfa); Infections (mono, HIV, CMV)] Non immunological destruction [DIC, TTP, giant haemangioma, micro-angiopathic haemolytic anaemia; Sequestration] Hypersplenism; Dilutional 	2 groups in bold 2 examples from each
	2. What is the pathogenesis of immune thrombocytopaenic purpura?	Triggers: Primary /ldiopathic ITP : acute / chronic Secondary : drugs ,HIV Chronic – more common – young adult women Formation of antibodies against platelet membrane glycoproteins (IIb-IIIa or Ib-IX); Antibodies evident 80% (plasma/platelet surface) Opsonised platelets susceptible to phagocytosis (mononuclear) Spleen probably major site of removal; 80% improve after splenectomy (site destruction + auto antibody synthesis) Acute – disease of childhood Viral illness – abrupt onset; Antiplatelet autoantibodies; Self- limiting, resolves usually within 6 months	Bold to pass

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Q11. What are the different types of acute inflammation?Morphologic patterns and outcomes of acute inflammationPrompt: What are the morphological patterns of acute inflammation?LOA: 11		 1.a. Serous inflammation: thin fluid from plasma or mesothelial lining cells e.g. burns, effusions (pericardial, pleural) b. Fibrinous inflammation: more severe injuries and greater vascular permeability allows larger molecules such as fibrin e.g. characteristic of inflammation in body cavities (pericardial sac,meninges,pleura) c. Suppurative / purulent inflammation: large amounts of pus / purulent exudates – neutrophils,necrotic cells,oedema fluid e.g. organism type (staph); site (appendicitis) d. Ulcers: local defect in surface of an organ/tissue 	2 with examples
	2. What are the outcomes of acute inflammation?	 2.a. Complete resolution +/- scarring b. Abscess formation (suppurative inflammation) c. Fibrosis (fibrinous inflammation) d. Chronic inflammation 	2 of 4
Q2 Type 1 Hypersensitivity Reaction LOA: 1	 What is a type I hypersensitivity reaction? What is the immune mechanism that causes it? What pathological effects do the substances released from mast cells have? 	 A rapid immunologic reaction due to antigen and antibody(IgE) combining. Previous Ag exposure results in activation of Th2 cells results in IgE Ab production by B cells. IgE binds to mast cells. Repeat Ag exposure, Ag-Ab bind and results in mast cell degranulation. Vasoactive amines (Histamine), and lipid mediators (Leukotrienes, PG) released. May have late phase reaction (Cytokines) Vascular dilation/ oedema, SM contraction, mucus production 	Bold required 3/6 bold with concept 2 to pass

Fri AM Q3 CVA LOA: 1	1 What are the causes of focal cerebral infarction?	 1. Arterial thrombosis, Cerebral embolism <u>Lacunar</u>- arteriosclerosis of the vessels in the lenticular nucleus, thalamus, internal capsule, deep white matter, caudate nucleus, and pons <u>Arteritis</u> – giant cell (temporal arteritis), PAN, SLE, infectious (CMV, aspergillosis, TB, Syphilis) <u>Arterial dissection</u> <u>Venous infarction</u> – hanging, - venous sinus thrombosis 	Need bold (arterial thrombosis, embolism) and one other (underlined) to pass.
	2. What are the sources of cerebral thromboemboli? (Prompt: What happens in cerebral embolism?)	 2.Source (s) - usually from heart (LAA, mural thrombus, valvular vegetations) - plaques from carotid bifurcation; - paradoxical emboli in patent foramen ovale Precipitant (not specifically in text) – Afib / cardioversion Consequence – most commonly lodges in MCA, often at branch points, causes ischaemia due to poor collateral flow 	Need at least 1 cardiac and 2 sources in total to pass.
Q4 Cholelithiasis LOA: 2	1. What are the risk factors for the development of cholesterol stones?	1.Age, Gender – 25% in the > 80 yo, women > men; Environmental factors – OC, pregnancy – increase expression of hepatic lipoprotein receptors and stimulates hepatic HMG-CoA reductase – enhancing cholesterol uptake and synthesis. Obesity, rapid weight loss.; Acquired disorders – gallbladder stasis – neurogenic or hormonal; Hereditary factors – e.g. genetic factors encoding for hepatocyte proteins that transport biliary lipids - ATP-binding cassette (ABC) transporters.	3 of 5 bolded.
	2. Describe the pathogenesis of cholesterol stone formation.	2.Requires the following simultaneous conditions: Bile supersaturated with cholesterol; Hypomotility of gall bladder; Cholesterol crystal nucleation – accelerated; Hypersecretion of mucus in the gall bladder traps crystals – aggregation into stones	Bolded and displays understanding of concept
Q5 Acute Kidney Injury LOA: 2	1. What causes acute kidney injury?	 Commonest cause of acute renal failure. Ischaemia: hypotension, vasoconstriction, capsular tamponade. Direct toxic injury: (aspirin), aminoglycosides, contrast, myoglobin, crystals, protein. Acute tubulointerstitial nephritis (infections, heavy metals, hypersensitivity reaction to drugs). Post renal urinary obstruction. DIC, sepsis. Highly variable. Initiation phase: decreased urine output with elevation of urea (< 36 	One example for each bolded and then at least one other cause.
	2. How does urine output often change with time following acute kidney injury?	 hours) b. Maintenance phase: sustained decreased output (40 – 400 ml/day), salt and water overload, uraemia, hyperkalaemia, metabolic acidosis. c. Recovery phase: increased output and hypokalaemia. Increased vulnerability to infection. May last for months. 	Know initial decrease followed by diuresis

Fri PM (Session 4) Candidate Number......

TOPIC	QUESTIONS		KNOWLEDGE (essential in bold)		NOTES	
Q1 Hypertrophy	1. What is hypertrophy?		Increased size of a tissue due to increased cell size); Due to synthesis of structural components.			
LOA: 1	 2. What are the types of hypertrophy? 3. Describe examples of each type hypertrophy? Prompt: Can you give examples of physiologic and pathologic hypertrophy? 	functional dema Cell hypertroph Physiological: sk (hormonal), bre	ogical or pathological depending upon increased and or specific hormonal stimulation. y can occur in dividing or non-dividing cells keletal muscles with exercise, uterus in pregnancy easts in lactation. ostate in BPH, heart in chronic hypertension.	One example each		
Q2	1. What are the chemical	Histamine	Vasodilation, increased vasc permeability, endothelial activation	4 to	pass	
Mediators of	mediators of acute inflammation? 2. What do they do? -	Serotonin	Vasodilation, increased vasc permeability	4 general	aoral	
acute inflammation		Prostaglandins	Vasodilation, pain, fever		ect actions	
		Leukotrienes	Increased vasc permeability, chemotaxis, leukocyte adhesion and acti	vation		
LOA: 1		Platelet- activating factor	Vasodilation, increased vasc permeability, leukocyte adhesion, chemo degranulation, oxidative burst			
		Reactive oxygen species	Killing of microbes, tissue damage			
		Nitric oxide	Vascular smooth muscle relaxation, killing of microbes			
		Cytokines (TNF, IL-1)	Local endothelial activation (expression of adhesion molecules), fever/pain/anorexia/hypotension, decr vascular resistance (shock)			
		Chemokines	Chemotaxis, leukocyte activation		1	
		Complement (C5a, C3a, C4a)	Leukocyte chemotaxis and activation, vasodilation (mast cell stim			
		Kinins	Incr vasc permeability, smth muscle contraction, vasodilation, pain			
		Proteases activated during coagulation	Endothelial activation, leukocyte recruitment			
Q3 Strep infections LOA: 1	1. What types of infections do Streptococcal bacteria cause? Prompt: Give examples of the different strep subtypes and the	ctions do1. Acute suppurativeş: skin, throat, lungs and heart valves.ceria cause?Group A S.pyogenes (throat, skin), Group B S.agalactiae (femalees of thegenitial, neonate sepsis), α Haemolytic, S.pneumoniae (CAP),es and themeningitis S.viridans (mouth, SABE), S.mutans (teeth)				
	infections they cause?				>= 2 to pass	

Fri PM Q3 Strep (con'td)	2. What post infectious syndromes do streptococci cause?	2. GN, rheumatic fever, erythema nodosum	1 to pass
Q4 Hepatitis C	1. What type of virus causes Hepatitis C?	1. Flaviviridae family RNA virus	One of bold
LOA: 2	2. What are the risk factors for acquiring Hepatitis C?	 IVDU 54%; Multiple sex partners 36%; Recent surgery 16%; Needle stick 10%; Multiple contacts with HCV infected person10%; Health care workers 1.5% Unknown 32%; Children (perinatal) 6% (cf HBV 20%) 	IVDU and 2 others
	3. What is the natural course of Hepatitis C?	 3. Incubation 2 – 26 weeks (mean 6 – 12); Asymptomatic in 85% HCV RNA detectable in 1 – 3 weeks Anti HCV Ab S0 – 70% while symptomatic Usually a mild disease Persistent infection -> chronic hepatitis 80 – 85% Cirrhosis 20 – 30% (5 – 20 years) Fulminant hepatitis rare 	Bolded
Q5 Consequences of Atherosclerotic Disease	1. Describe the differences between stable and vulnerable atherosclerotic plaque.	 Stable = dense collagenous and thickened fibrous caps with minimal inflammation and small underlying atheromatous core. Vulnerable = thin fibrous cap, large lipid core and increased inflammation – prone to rupture. 	1. 2 Bolded parts from each
LOA: 2	 What pathological changes can occur in these plaques? What are the consequences of these changes? 	 Categories for plaque change: Rupture/fissuring – exposing highly thrombogenic plaque components – inducing thrombosis. Erosion/ulceration – exposing thrombogenic subendothelial basement membrane – inducing thrombosis Haemorrhage into atheroma – expanding volume Consequences Small vessels can occlude – compromising distal perfusion Ruptured plaque can embolise atherosclerotic debris and occlude distal circulation or can cause acute thrombosis. 	2. 2 of 3 bold 3. 2 of 3
		 c. Destruction of vessel wall can cause aneurysm formation with secondary rupture and/or thrombosis. 	concept

ACEM PRIMARY 2012/2PharmacologyVIVA

VIVA Morning Session 1

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE	NOTES
Question 1 Clearance-renal and hepatic	What is drug clearance?	Clearance predicts the rate of elimination in relation to drug concentration. CL=rate of elimination/concentration	Bold
LOA 1	Which organs are involved in drug clearance?	2 main organs are kidney and liver , others are blood, muscle, lung. CL systemic= CL liver + CL kidney + CL other	Bold
	What factors affect renal clearance?	Renal function, renal blood flow , plasma protein binding, ionization	Bold
	Please name drugs that are predominantly cleared by the kidneys?	ampicillin, g entamicin , vancomicin, digoxin, enalapril, metformin, lithium	At least bold plus 2 others- prompt: Any drugs that need dose changes in patients with poor renal function?
Question 2 Oral hypoglycaemics	Describe the pharmacokinetics of metformin?	Well absorbed, not protein bound, not metabolised, elimination t1/2: 1.S-3 hours, excreted by kidney as unchanged compound	Bold
LOA: 1	What are the side effects of metformin?	Gastrointestinal most common 20%, decreased absorption Vit B12, lactic acidosis esp with renal disease, ETOH, chronic cardiopulmonary disease	Bold
	With regard to sulphonylureas, what is	Increase insulin release from the pancreas bind	Patients more prone to hypo

	the mechanism of action of glipizide? (prompt: it's a sulphonylurea)	to receptor associated with ATP sensitive K channel, inhibits efflux of K ions, results in depolarization and opens ca channel, influx of Ca causes release of preformed insulin Reduction of serum glucagon levels Closure of potassium channels in extrapancreatic tissues	than with biguanides eg metformin
Question 3	What's the mechanism of action of Rocuronium?	Non-depolarising NM blocker. In low doses it predominantly acts as a	Non-depolarising NM blocker.
Non Depolarising		competitive inhibitor of Acetylcholine at nicotinic	Initially acts as competitive
Muscle Relaxants	(Prompt: receptor level)	receptors. In larger doses it can enter the pore of the ion channel -> greater NM blockade.	inhibitor for Ach at nicotinic receptors
LOA: 1		It can also block prejunctional sodium channels-> interference with the mobilisation of AChI at nerve endings.	
	Describe the pharmacokinetics of rocuronium.	Undergoes rapid distribution. Highly ionized - so small Vd (80-140ml/kg). Undergoes hepatic metabolism (75-90%) and	Rapid distribution. Short T1/2.
	Prompt: Describe rocuronium's	renal excretion.	
	distribution and elimination.	Duration of action is 20-35mins.	
Question 4	Can you give me an example of a	Calcium Carbonate or Ca -acetate, citrate,	Need to name 1
Calcium	preparation of calcium that is taken orally?	glubionate, gluconate, lactate or phosphate	

LOA: 1	What are the possible uses of oral calcium preparations?	 i) Treatment of hypocalcaemia (eg. in patients with hypoparathyroidism, vit D deficiency, chronic renal disease or malabsorption). ii) As an antacid 	hypocalcaemia.
	What are the potential adverse effects of giving calcium intravenously?	Irritation of the veins. Cardiac arrhythmias with rapid administration. Hypercalcaemia.	phlebitis
Question 5	List some anti-influenza agents	Zanamivir, Oseltamivir, Amantadine, Rimantadine	1 to pass
Anti-influenza agents LOA: 2	What is the mechanism of action of zanamivir (relenza) and oseltamivir (tamiflu)?	Neuraminidase (a glycoprotein) inhibitors: disrupt viral replication and release Active against both influenza A and B;	Some concept
	What are the indications for their use?	Approved for treatment of uncomplicated influenza; 5 day course of therapy within 36 – 48 hrs of symptom onset shortens severity and duration of illness; may decrease incidence of respiratory complications	1 to pass
	What is the relevance of these agents to emergency medicine practice? PROMPT: what about during the recent	May be of use to higher risk groups eg indigenous, pregnant women, older people and immunocompromised, however primary prevention by vaccination is preferred . Used	One of bold

flu pandemic?	preferably at early phase of pandemic to limit spread and numbers infected, and limit severity of disease in those infected.	

ACEM PRIMARY 2012/2Pharmacology VIVA

VA Afternoon Session 2

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	Define the "volume of distribution" of a	Defined as the volume in which the amount of	Pass: either definition or
Volume of	drug.	drug in the body would need to be uniformly	formula
distribution		distributed to produce the observed	
LOA: 1		concentration in blood, plasma or water.	
		Vd = Amt drug in body/C	
	How is it possible for a drug to	Higher concentrations in extra vascular tissues	Pass: either not
	have a VD of 2500L in an adult?	than in blood – e.g. lipid soluble (not	homogeneously distributed or
		homogeneously distributed)	extra vascular tissue higher
			conc
	Give an example of a drug with a:	High: Morphine, chloroquine, digoxin, clonidine,	
	- high VD	fluoexitine, tricyclics, β blockers, diazepam,	One of each
	- low VD		
		Low/approximating ECF/TBW: aspirin, frusemide,	One of each
		antibiotics (gentamicin, amoxicillin, cephalexin),	
		tolbutamide, phenytoin, valproic acid, lithium,	1
		warfarin, theophylline, indomethacin,	
		sulphamethoxazole.	
		Drugs with large Vd (TCAs) cannot be dialyzed	
	What is the importance of Vd in the	whereas drugs with a low Vd (ASA, lithium) can.	Bold — use these to prompt;
	overdose situation		should be able to designate
	PROMPT – for example (drug name)?		"high" or "low" VD to pass.
Question 2	Describe the central nervous effects of	1) central	Bold to pass

Morphine	Morphine	analgesia	candidate should be able
-OA: 1		euphoria	To describe in detail of each
		sedation	one in bold
		respiratory depression	
		 cough suppression 	
		• miosis	
		 truncal rigidity 	
		nausea / vomiting	
		temperature	
	Describe peripheral effects?		
		2) peripheral:	
		cardiovascular	
		GI- constipation	
		Biliary	
		Renal	
		Uterus	
		Neuroendocrine	
		Pruritis	1
		• immune	
Question 3	Explain the solubility characteristics of	Nitrous oxide possesses low solubility in the	Bolded concept to pass
litrous oxide	nitrous oxide	blood, reaches high arterial tension rapidly, Rapid equilibrium in the brain and fast onset of	

.

LOA: 1		action (rapid onset-rapid recovery)	
	Draw the arterial anaesthetic tension vs time for nitrous oxide vs halothane or Methoxyflurane	100 90 90 90 90 90 90 90 90 90	A curve
Question 4 Warfarin	Describe the mechanisms by which drugs interact with Warfarin.	PK - Enz inhibition (majority), Enz induction, altered, plasma protein binding, altered abs	Must get one example of PK and PD
Interactions	Prompts Please describe pharmacokinetic interactions	PD – Synergism (impaired haemostasis) Competitive antagonism (clotting factor synthesis/concentration)	
LOA: 1	Please describe pharmacodynomic interactions		
	Give some examples of drugs that increase the INR.	↑ INR: aspirin, heparin, corticosteroids metronidazole, fluconazole, trimethoprim-	Must give at least 1 example of each

	Give some examples of drugs that decrease the INR.	sulfamethoxazole, third generation cephalosporins, macrolides, amiodarone, SSRIs, tramadol ↓ INR: Vit K, diuretics, barbiturates, phenytoin, carbamazepine, rifampicin, diclox, azathioprim	
Question 5 Serotonin	Describe the mechanism by which Serotonin Syndrome occurs.	Excessive stimulation of serotonin receptors in the CNS due to overdose of single drug or concurrent use of several drugs. Predictable, not idiagunated	Must get bold items
Syndrome LOA: 2	Prompt: What receptors are involved in SS?	idiosyncratic.	
	How do drugs cause excessive stimulation of serotonin receptors?	Inhibition of serotonin metabolism: meclobemide, amphetamines	Must identify at least 1 mechanisms with corresponding example
	Prompt: Can you give an example	Prevention of serotonin reuptake in nerve terminals: fluoxetine, paroxetine, sertraline, venlafaxine, tramadol, TCA	FQF
		Serotonin release or increased intake of serotonin precursors: tryptophan, lithium,	

ACEM PRIMARY 2012/2Pharmacology VIVA

VIVA Morning Session 3

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Signalling mechanisms LOA: 1	List the various molecular mechanisms of transmembrane signalling.	 Lipid soluble ligand crosses membrane and binds to intracellular receptor. Transmembrane receptor protein with ligand binding to extracellular domain regulating intracellular enzymatic activity Transmembrane receptor protein that binds and stimulates protein tyrosine kinase Ligand-gated transmembrane ion channels Transmembrane receptor protein, G protein, intracellular second messenger 	Describe 3 mechanisms to pass
	Describe the function of the system involving G proteins	Transmembrane signally system with 3 separate components. Extracellular ligand binds to specific cell surface receptor . This receptor then activates G protein located on cytoplasmic surface of membrane. Activated G protein changes activity of effector element (enzyme or ion channel) leading to a change in concentration of second messenger.	Bold concepts to pass

	Give an example of a drug that acts via this system.	B agonist: B adrenoreceptor, G _S protein, adenylcyclase, increased concentration cAMP. (other examples include glucagon, thyrotropin, histamine, serotonin, acetylcholine, opioids)	Correct example to pass. Extra points for describing components
Question 2 adenosine	What are the indications for use of Adenosine?	Conversion of paroxysmal SVT to sinus rhythm.	Bold to pass
LOA: 1	How does it work?	Activation of inward rectifier K+ currents and inhibition of calcium currents. Leads to marked hyperpolarisation and suppression of calcium- dependent APs. Effect is direct inhibition of AV nodal conduction and increase in AV node RP. This interrupts re-entry pathway thru AV node.	AV node conduction interruption
	How do the specific pharmacokinetic properties of adenosine influence the method of administration?	Very rapid metabolism by adenosine deaminase in red cells and vessels walls = very short elimination t1/2 (<10s) and duration of action (~30s). Must be given by rapid intravenous bolusing. If initial dose ineffective then subsequent dose should be increased (no accumulation occurs).	Bold to pass
Question 3	What are the side effects of chlorpromazine?	Hypotension – alpha blockade Parkinson's, akthesia, dystonic reactions – D2	Two bolded side effect any dyskinesia sufficient) and one
Phenothiazines		Lactation – D2	correct mechanism.
LOA 2	(If required: What are the mechanisms of these side effects?)	Sedation – antihistamine Neuroleptic malignant syndrome – dopamine Confusion, tachycardia – anti muscarinic	

	How do the newer atypical anti psychotic agents differ from chlorpromazine?	Newer agents have less side effects.	
Question 4 Tisssue Plasminogen Activator LOA 1	Describe the mechanism of action of tissue plasminogen activator (tPA)?	Activates plasminogen to form plasmin, resulting in fibrin digestion. Preferentially activates plasminogen bound to fibrin by several hundred fold therefore is considered clot specific. Short half life therefore heparin is essential adjunct. Naturally occurring.	Bold
	What are the clinical uses of tPA? Prompt: Are there are any other time- critical indications?	AMI, unstable PE, acute ischaemic stroke , severe DVT, intra arterial peripheral lim b s	First 3 to pass
	What are the complications of tPA?	Haemorrhage. Physiological hemostatic thrombi at site of vascular injury eg GIH, or systemic lytic state resulting from formation of plasmin, producing fibrinogenolysis and destruction of other coagulation factors esp V and VIII.	Must give more than one site.
Question 5 Seizure medications	Describe the pharmacokinetics of sodium valproate	Well absorbed PO, bioavailability >80% Food may delay abs for several hours. Peak plasma levels 2 hrs if empty stomach 90% protein bound (fraction bound reduces as	Highly protein bound and small Vd to pass

LOA: 1		total dose increases). Highly ionized and highly protein bound, therefore Small VD, essentially confined to extracellular water, approx. 0.15L/kg 95% hepatic metabolism, (some to active metabolites), 5% unchanged in urine Clearance is low and dose dependent, T1/2 is approx. 15/24 (9-18) and reduced if taking other antiepileptic drugs	
	Describe the toxic effects of sodium valproate.	Mild : Transient GI inc anorexia, nausea and vomiting. Rash, alopecia and increased appetite. Weight gain. Major Overdose: CNS: coma, cerebral oedema (potentially fatal) Bone marrow depression Metabolic effects: hyperNa, hypoCa, hyperammonaemia CVS, renal effects	CNS to pass
		 Severe and idiosyncratic 1. Hepatotoxicity – rarely fatal, usually in under 2 yo, or multiple meds. Elevation of LFTs in 40%. May be reversible 2. Thrombocytopaenia 	

Candidate Number......

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	What factors are responsible for	Genetic factors	Need 3 to pass
Factors affecting	differences in drug metabolism between		
drug metabolism	individuals?	Diet and Environmental	
LOA: 1		Age and Gender	
		Drug-Drug Interactions	
		Disease states	
		Induces inhibitors	
	Can you give an example of a drug-drug	Protein binding	Must give an example with
	interaction?	Renal clearance	correct mechanism
		Pharmacodynamic interactions	
Question 2	What is the mechanism of action of	A reversible muscarinic antagonist	Bold to pass
Atropine	atropine?		
LOA: 1		Binds to the muscarinic receptor, preventing the	
LOA: 1		release of inositol trisphosphate (IP_3) and the	
		inhibition of adenyl cyclase which are caused by the muscarinic agonists.	
	Describe the organ effects of atropine.	CNS: \Downarrow tremor in Parkinson's Disease, delirium	3/6 organ effects to pass
	Describe the organ effects of all opine.	EYE: Mydriasis and cycloplegia	
		CVS: Tachycardia	
		LUNG: Bronchodilation and \Downarrow secretions	
		GIT: \Downarrow salivary secretion, \Downarrow gastric secretion acid,	
		pepsin and mucin, ↓ gastric emptying, îl Gut	
		transit time	
		GUT: relaxes ureteric and bladder wall smooth	
		muscle and slows voiding; \Downarrow sweating.	

Question 3	Name some macrolide antibiotics?	Erythromycin, roxithromycin, azithromycin, clarithromycin.	Pass = 2
Macrolides			
LOA: 2	Describe the mechanism of action of macrolides?	Inhibits bacterial protein synthesis by binding to 50S ribosomal RNA, which blocks the aminoacyl translocation reaction and formation of initiation complexes (transpeptidation). May be inhibitory or bactericidal, particularly at higher concentrations.	Pass = bold
	What organisms are macrolides effective against?	Gram + orgs: pneumococci, streptococci, staphylococci, corynebacteria Mycoplasma, Legionella, Chlamydia sp, listeria, some mycobacteria Gram – orgs: Neisseria sp, Bordatella pertussis, Treponema pallidum, Campylobacter sp, bartonella (Haemophillus less susceptible)	Pass = 3
Question 4	Give some examples of drugs used as anaesthetic induction agents?	Thiopentone, propofol, ketamine, fentanyl, midazolam, etomidate	Pass = 2
Induction agents			
LOA: 1	Describe the onset and recovery of propofol and ketamine?	Both have rapid, Ketamine has a slower recovery and is often associated with emergence phenomena.	Bold to pass
	Describe the cardiovascular effects of propofol and ketamine?	Propofol-marked decrease in BP during induction via decreased peripheral arterial resistance and venodilation. Also greater direct negative inotropic effects of other induction agents	
		Ketamine – produces does-related CV stimulation, increased HR, BP and CO (by stimulating central symp nervous system +/- inhibiting NA reuptake at symp nerve terminals	

Question 5	Describe the mechanism of action of	Binds to endothelial cell surfaces and plasma	Binds to AT III
	heparin?	proteins and its activity depends on antithrombin	
Heparin		Heparin binds to antithrombin, causes a	
LOA: 1		conformational change in the inhibitor, exposing	
		its active site for more rapid interaction with	
		proteases. Heparin acts as a co factor for the	
		antithrombin-proteases reaction Antithrombin	
		inhibits proteases espec thrombin 2a, 9a, 10a by	
		forming stable complexes with them and the	
		presence of heparin accelerates this reaction	
		1000x	
		The binding of AT III and unfractionated heparin	
		\uparrow degradation of both factor Xa and thrombin	
	How is heparin reversed?	Stop the drug	
	Prompt: is there a specific antidote?	Administer antagonist protamine (100 units	Bold
		heparin-1mg protamine) which binds heparin to	
		form a complex devoid of anticoag activity	
		Excess protamine anticoag effect	
	What are the potential adverse effects	Bleeding (elderly women, renal failure more	Bold
	of heparin?	prone)	
		TCP (1-4%), rare pregnancy, lower rates in	
	Prompt: Are you aware of any less	paediatrics. Mortality relates to thrombosis	
	common but serious idiosyncratic	Allergy	
	effects?	↑ hair loss	
		Reversible alopecia	
		Accelerates the clearing of post prandial lipaemia	
		by causing release of lipoprotein lipase from	
		tissues	
		Long term: osteoporosis, spontaneous fracture,	
		mineralocorticoid deficiency	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 LOA: 1	Please draw a pressure-volume loop for the left ventricle.	$\begin{array}{cccc} \bullet & a \rightarrow b \text{ isovolumetric contraction} \\ \bullet & b \rightarrow c \text{ ventricular systole} \\ \bullet & c \rightarrow d \text{ isovolumetric relaxation} \\ \bullet & d \rightarrow a \text{ ventricular filling} \\ \end{array} \qquad \qquad \begin{array}{c} 200 \\ \hline B_{e} \hline \hline B_{e} \\ \hline B_{e} \\ \hline B_{e} \\ \hline B_{e} \hline \hline B_$	The candidate must be able to label the axes and draw a reasonable pressure-volume loop to pass this question.
	Please relate the phases of the cardiac cycle to this pressure- volume loop.	 75% along the line'd' to 'a' and closer to 'a' atrial systole (phase 1) occurs. The mitral valve closes at 'a' and the pressure rises sharply from 'a' to 'b' during isovolumetric ventricular contraction (phase 2) The aortic valve opens at 'b' and the pressure rises to a plateau and volume falls from 'b' to 'c' during ventricular ejection (phase 3) The aortic valve closes at 'c' and pressure falls from 'c' to 'd' during isovolumetric ventricular relaxation (phase 4) At 'd' the mitral valve opens and diastole commences (phase 5) from 'd' towards 'a'. 	The candidate must be able to relate three of the five phases of the cardiac cycle to the pressure-volume loop.
Question 2	1.What factors	Passive diffusion	Need to know the basic Fick
LOA: 1	influence the rate of oxygen transfer from the alveolus into the pulmonary capillary?	Determined by Ficks law of diffusion Vgas α <u>A</u> . D. (P1-P2) T (Affected by surface area (A), membrane thickness(T), Difference in partial pressures gas between alveolus (P1) and Capillary(P2), and diffusion constant(D)	equation to pass.
	2. How do we measure diffusion capacity?	D α <u>gas solubility</u> √Molecular weight gas Carbon monoxide is used for measurement because its uptake is diffusion limited(not depend on amount blood available only on diffusion properties bld-gas barrier) (single breath method test can be used)	As bonus would need to explain why this is so – ie because the CO is so avidly taken up by Hb that the concentration gradient across the membrane never reduces, so membrane properties define flux
Question 3 RBF LO A : 1	1.What is normal renal blood flow (L/min)?	1.2 – 1.3 L/min (25% of C.O.) at rest	
RBF	2. Describe the mechanisms which determine renal blood flow.	Perfusion pressure (systemic MAP); renal arterial flow (local constriction from NA & Ang II, dilatation from Ach, PGs, dopamine); Renal nerves (stim of sympath \rightarrow NA \rightarrow decreased RBF); Autoregulation (in part due to direct smooth muscle contractile response to stretch of the afferent arteriole; NO; Ang II has a role at low perfusion pressures); Regional differences in RBF (greatest at cortex, less in inner medulla)	Must say 3 of 5

Question 4	4.1 What factors determine blood	 4.1 Balance between glucose entering & leaving bloodstream dietary intake 	4.1 All three (intake, uptake, hepatic)
LOA: 1 Blood glucose control	glucose level? (Prompt: what are the broad principles [rather than specifics?])	 entry into muscle, adipose tissue, other organs glucostatic activity of the liver (GNG, glycogenesis, glycogenolysis) 	Hepatic GNG acceptable if only mention 1 other mech?
(Ganong 23) 22-23, 326-332	4.2 How does exercise affect glucose levels? PROMPT : By what mechanism?	 4.2 Increased entry of glucose into skeletal muscle insulin-Independent Incr in GLUT 4 transporters in muscle cell membranes persists for several hours regular exercise can -> prolonged incr in insulin sens Exercise in T1DM can ppt hypo also cos abs of injected insulin more rapid during exercise 	Alter Close + Alter Alter + Al
Question 5 Pain and its Modulation LOA: 2	5.1 Describe how pain is transmitted from the periphery to the brain	 a. sense organ = naked nerve endings b. transmission via 2 fibre types small, fast myelinated A-delta fibres large slow unmyelinated C fibres c. spinal cord: both fibre groups end in dorsal horn of spinal cord ("gate") A-deita fibres on neurons in laminas 1&4 C fibres on laminas 1&2 d. from spinal cord to brain via ventrolateral system – second order) (including lateral spinothalamic tract) to thalamus and then third order neurons on to cerebral cortex 	Must mention dorsal horn of spinal cord and at least 3 others of bold to pass
	5.2 How can acute pain be modulated?	 a. "gate theory" : eg stimulation of large touch/pressure afferents causes inhibition of pain pathways in dorsal horn of spinal cord b. Stress-induced analgesia c. Drugs (eg opioids) d. Higher centre interpretation 	Must get 'gate theory' + 1 other
	5.3 What sites do opioid peptides act on?	 a. receptors in afferent nerve fibres b. dorsal horn region of spinal cord c. periaqueductal grey matter in brain 	Supplementary Question if answers above

Thursday Afternoon Session 2

Candidate Number:

AGREED MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Control of Blood Pressure	1.1 How is blood pressure maintained in the setting of acute blood loss?	 seconds/minutes baroreceptors (increased discharge with stretch, afferent nerve fibres pass to vasomotor area of medulla which in turn inhibits tonic discharge of vasoconstrictor nerves leading to drop in BP) chemoreceptors (stimulation leads to peripheral vasoconstriction and rise in BP) CNS ischaemic receptors minutes/hours renin-anglotensin system blood volume changes fluid shift through capillaries 	Bold to pass + must understand baroreceptors
	1.2 What other factors influence the vasomotor centre?	 3. Longer term renal compensation via aldosterone blood volume changes salt intake Direct stimulation CO₂, hypoxia Excitatory inputs from cortex via hypothalamus from pain pathways and muscles chemoreceptors (carotid & aortic) Inhibitory inputs 	Must get 2 of 3 bold
Question 2 Lung Volumes LOA: 1	Please draw and label a diagram showing a spirometer tracing of static lung volumes.	 from cortex via hypothalamus from lungs from baroreceptors Tidal volume 500 mL Functional residual capacity 3L Residual volume 1.5-2.0 L Vital capacity 5.5-6L Total lung capacity 7-8 L 	The candidate must be able to label the axes, draw a reasonable spirometer tracing and indicate three of the five major volumes.
	What is residual volume and state a method or methods of measuring this volume?	 The residual volume is the volume of gas left in the lung after a maximal expiration. Residual volume may be measured by: Helium dilution technique; Body plethysmography; Nitrogen washout and measurement. Helium dilution and nitrogen washout measure only the ventilated residual volume. The body plethysmograph measures the total volume of gas in the lung, including any that is trapped behind closed airways. 	The candidate must be able to provide a satisfactory definition.

		 In young normal subjects, these volumes are virtually the same, but in patients with lung disease, the ventilated volume may be considerably less than the total volume because of gas trapped behind obstructed airways. 	
Question 3 Renin secretion LOA: 1	1.What physiological factors are involved in regulating renin secretion?	 Intrarenal baroreceptors- An increase of afferent arteriolar pressure at the JG cells causes a decrease in rennin secretion (and vice versa) Amount of Na and CI entering the distal tubules in the macula densa cells(increase in NaCI causes a decrease in rennin secretion (? NO mediated)) Plasma K level (probably thru NaCl effect) Angiotensin II/Vasopressin (inhibitory) Increase in sympathetic Nervous system Catecholamines and norepinephrine Prostaglandins 	1-4 inhibit rennin secretion 5-7 stimulate renin secretion
	2. What conditions increase renin secretion?	Sodium depletionDehydrationDiureticsCardiac failureHypotensionCirrhosisHaemorrhageConstriction renal ArteryUpright positionConstriction of aortaVarious psychological stimuli	3 conditions to pass
Question 4 Stretch rflx LOA: 2	1. Describe or draw the components of a muscle spindle.	In parallel intrafusal muscle fibers (3 types – dynamic nuclear bag, static nuclear bag and nuclear chain); sensory nerve endings (Group Ia afferent to all and efferent axons, Group II to nuclear chain and static nuclear bag); dynamic gamma motor nerves to dynamic bag fibers, static gamma motor nerves (to static nuclear bag and chain fibers).	Bold to pass
	2. Describe the	A Muscle spindle B Intrakual fibera of the muscle spindle	Must mention 3 of 5 bold
	sequence of events involved in producing a stretch reflex.	Sequence: stimulus (muscle stretch); muscle; sensory organ (muscle spindle) within the muscle body; efferent sensory nerve; synapse in spinal cord to motor neuron supplying same muscle. Transmitter (glutamate).	

Question 5	1. What are the types of	1. Five Types	1. 3 of 5 to pass
Immunoglobulins	immunoglobulins and	A = Secretory	
	what is the clinical	D = Antigen recognition by B cells	
LOA: 2	significance of each?	E = Anaphylaxis; release of histamine from basophils & mast cells	
	Ū	G = Complement Activation; infections	
		M = Complement Activation; infections, first produced	
		Antigen-	
		binding	2. Bold to pass
	2. Draw a typical	site	Light Chain
	Immunoglobulin		Heavy Chain
	Molecule and label the		Fab ≈ Antigen Binding
	parts.		Fc = Effector Portion
	Prompt: Indicating the	Fab	Hinge
	Variable regian on their		V = Variable Region
	diagram; what is the	Jest Ven JL	
	significance of this		
	region?		
	region	Complement \rightarrow $-C_{H^2}$ Hinge	
		Uniting L	
		Fc Macrophage	
		binding	
			1
	BONUS	Innate immunity	
	3. What are the features	 triggered by cellular receptors (eg TLRs = "Toll-like Receptors") 	
	of innate and acquired	 bind molecular sequences common on MOs (not in eukaryotic cells) 	
	immunity?	activate defence mechanisms (interferons, phagocytosis, production of	
		antibacterial peptides, complement activation, proteolytic cascades)	
		 important in early response to infection 	
		Acquired immunity	
		Tlymphocytes	
		 Cell-bound receptors related to antibody molecules]
		 APCs (Antigen Presenting Cells), MHC (Major Histocompatibility Complex) 	
		& HLAs (Human Leukocyte Antigens)	
		o encounter cognate antigen	
		o T cells proliferate & produce cytokines	
		o orchestrate immune response, including	
		-	
		Blymphocytes	
		B lymphocytes o form clones to produce Abs	
		 B lymphocytes form clones to produce Abs Memory cells 	
		B lymphocytes o form clones to produce Abs	

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	1.1 Please draw and label the intervals and	P wave, PR interval, QRS complex, ST segment, T wave (U wave optional) and QT segment	Successfully draw an ECG tracing and label all of it + correctly identify the
LOA: 1	segments of a normal ECG including times?	PR interval: 0.12-0.2 sec. Atrial depolarisation and conduction through AV node	duration of 2 of the 4 intervals to pass
	1.2 What electrophysiological	QRS duration: 0.08 – 0.12 sec. Ventricular depolarisation and atrial repolarisation.	
	event occurs during these periods?	QT interval: 0.40-0.43 sec. Ventricular depolarisation plus ventricular repolarisation	
		ST interval (QT minus QRS) 0.32 sec. Ventricular repolarisation	3 of 4 events
Question 2 [Pulmonary vascular resistance]	2.1 What two mechanisms allow pulm vasc resistance to fall? (such as during exercise)	a. 'Recruitment' of normally closed (non perfused) pulm capillaries b. 'Distension' at higher vasc pressures, from near-flat to circular cross-section capillaries	Bold to pass
		a. Lung volume : <i>when low,</i> pulm vasc resistance increased, due to smooth muscle and elastic tissue contraction: <i>when high</i> , again rises due to capil stretching and	Lung volume + one other.
LOA: 1	2.2 What other influences are there on pulm vasc resistance?	 reduction in calibre b. Hypoxia: increases pulm vasc resistance from pulm vasoconstriction c. Drugs: increased by serotonin, histamine, norepi (contract vessel smooth muscle). : decreased by acetyl choline and isoprenaline (isoproterenolol) 	
Question 3	1.1 What is the normal Glomerular Filtration	Rate: ~125mL/min normal adult	100-150
LOA: 1	Rate?	Factors: <u>Size</u> and <u>permeability</u> of capillary bed	
	1.2 What factors affect GFR?	Primarily by mesangial cell contraction / relaxation [and loss of renal tissue] Agents: <u>Increased</u> – ANP, Dopamine, PGE2, cAMP	3 of 4 Bold
	Prompt: what agents affect GFR and how?	<u>Decreased</u> – Endothelins, AG II, Vasopressin, Norepinephrie, PAF, Platelet-derived growth factor, TxA2, PGF2, Leukotrienes C4 & D4, histamine.	
		Hydrostatic and oncotic pressure gradients. Renal blood flow, Systemic BP (esp below auto-reg range), afferent and efferent arteriolar constriction	
		Ureteral obstruction, oedema of kidney, changes in plasma proteins (dehydration hypoproteinaemia), changes in capillary permeability	
		arteriolar constriction Ureteral obstruction, oedema of kidney, changes in plasma proteins (dehydration	

Question 4	Describe the withdrawal	A polysynaptic reflex occurring in response to a painful stimulus to skin/subcut	Need t	he bold concepts to pass
	reflex.	tissue and muscle. Survival/protective basis.		
Withdrawal		A pre-potent reflex (takes priority of all other concurrent reflex activity)		
LOA: 2	(Prompt – what are the	The "crossed" response is flexor muscle contraction and extensor muscle inhibition,		
	components?)	so the body part is flexed and withdrawn from stimulus. ALSO extension of opposite		
		limb. 'Irradiation of stimulus' up and down spinal cord results $ ightarrow$ recruitment of		
		motor units'		
		Reflex is enhanced by abolition of brain modulation.		
Question 5	Describe the	1)	1)	Conjugation + 3 more
	metabolism and	a) Bilirubin ex breakdown of Hb. Bound to albumin in circulation.		bolded processes to pass
LOA: 2	excretion of bilirubin ?	b) Most dissociates in liver, enters liver cells as free bilirubin via organic anion		
		transporting polypeptide (OATP), bound to cytoplasmic proteins;		
		c) conjugated to glucuronic acid via glucuronyl transferase in smooth ER to form		
		water soluble bilirubin diglucuronide;		
		d) transported against conc gradient into bile canaliculi; excreted in bile into		
		intestine		
		Small amount of bilirubin diglucuronide escapes into blood where loosely bound to		
		albumin and excreted in urine.		
		Total plasma bilirubin includes free bili plus small amount conjugated bili.		
		e) Intestinal bacteria – convert conj bili to urobilinogen which can be absorbed by		
		the intestinal mucosa, reabsorbed into portal circulation; some re-excreted into bile,		
		some enters general circulation and excreted in urine		
		2)		
		a) excess bilirubin production – haemolysis		
	What are the causes of	b) decreased uptake bilirubin into cells		
	jaundice ?	c) disturbed intracellular protein binding or conjugation		
		d) disturbed secretion of conjugated bilirubin into the bile cannaliculi	2.	Haemolysis, obstruction + 1
		e) intra- or extra-hepatic bile duct obstruction .	L.	more
		 (First 2.0) conta for a bill while bottom 2 more alreaded and the for the day W. (1) (1) (1) (1)		
		(First 3 liberate free bilirubin, latter 2 cause elevated conjugated bilirubin in plasma)		

A Afternoon Session 4

Candidate Number:

AGREED MARK:

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	Draw or describe the Frank-Starling law as it applies to human cardiac muscle?	Curve of SV against Ventricular EDV	Draw or describe a curve and + explain
LO A : 1		Circulating Circulating Calecholamines Sympathetic and parasympathetic nerve inpulses Contractile state of myocardium Acidosis	
	What factors influence the FS curve?	Pharmacologic depression Loss of myocardium	2 +ve, 2 -ve
		Circulating catecholamines; inotropes (inc dig); hypoxia, hypercarbia, acidosis – (negative); pharmacological depressants; loss of myocardium (- ve); intrinsic depression; sympathetic and	
Question 2 LOA: 1	a) What happens to normal ventilation, perfusion and the ventilation-perfusion ratio (V/Q) from top to bottom of the upright lung?	a) Both ventilation and perfusion increase with blood flow (perfusion) (Q) increasing more than ventilation (V) and this results in V/Q ratio DECREASING down the lung.	a) 3 of 3 bold to pass (know it all)
	b) Explain the reasons for the alveolararterial O_2 difference ?	b) Normally 4 mmHg 1)Even though P Alv O₂ at apex 40 mm Hg above base, most of blood flow (Q) comes from base where P Alv O₂ is low → decrease in P Art O₂	b) 1 of 2 bold to pass OK Need to discuss both mechanisms
		2)Also non-linear shape of O_2 dissociation curve means that addition of small amount of shunted blood with low O_2 concentration greatly decreases P O_2 of arterial blood and units with high P O_2 have little effect on O_2 concentration because curve is flat at high O_2 concentration	

Question 3 [Renal compensation acidaemia]	3.1 Describe how the renal tubule cells respond to metabolic acidaemia.	a. Acidaemia: renal tubule cells secrete H+ into tubular fluid, in exchange for Na	Bold to pass
LOA: 1	3.2 In metabolic acidosis, describe which buffer systems in the urine are involved that allow excretion of large amounts of H+?	Secreted H+ reacts with buffers: a. HCO3- to form CO2 and H2O with bicarbonate absorption b. HPO4 2- to form H2PO4- c. NH3 to form NH4+	Need two out of three bold
	3.2b What happens to glutamine synthesis in the liver in chronic metabolic acidosis?	a. Glutamine synthesis increased in liver, to provide kidney with additional source NH4+, as well as NH3 secretion increasing over days	Need to mention that glutamine synthesis increased
Question 4 LOA: 2	4.1 Describe the neural connections of the visual pathways?	 1.Retina - optic n - optic chiasm -optic tract - lateral geniculate body (thalamus) - geniculocalcarine tract - primary visual cortex (occipital lobe, Brodmann 17) (Bold to pass) Other connections a) lat geniculate nucleus to pretectal midbrain and sup colliculus (papillary refexes, eye movement) b) to frontal cortex (refined eye movement-vergence, near point response c) optic chiasm to thalamic suprachiasmatic nucleus (endocrine and circadian responses to day/night cycle) 	Visual Pathway Diaphragm – looking from above, R side lesions
	4.2 Describe the visual field defects of nerve sectioning at optic chiasm and optic tract on the right.	2. See diagram. Both to pass	optie tract

Question 5	5.1 Describe the ABO blood types and their	Inheritance – Mendelian co-dominance of A and B	Understand co-dominance +
LOA: 2	inheritance.	antigens. Complex oligosaccharides differing in terminal sugar. A and B phenotypes may be	Bold
		homozygous (AA, BB) or heterozygous (AO, BO)	
		genotypes.	
1		0 - no antigens (universal donor), anti-A and anti-B	
		antibodies A – anti-B	
		B – anti-A	
		AB - both antigens, no antibodies (universal	
		recipient)	
		Most individuals have H antigen (terminal fucose coded	
		by Higene)	
		A – N-acetylgalactosamine added on the H antigen B – terminal glactose added.	
		Similar antigens common in intestinal bacteria and	
		possibly foods so rapidly develop antibodies to those not represent in own cells.	
		O – no antigens (universal donor), anti-A and anti-B	
	5.2 Why is Group O blood is used as a 'universal donor'?	antibodies	Bold
		Rh (first described Rhesus monkeys) C, D, E and	
		others but only D clinically important (most antigenic).	- absence of antibodies in O
	Additional if mick:	Rh only present on red cells so need exposure to Rh	minimizing transfusion reactions.
	Additional if quick: i)How does the Rh system differ.	ve blood to develop antibodies. Occurs during transfusion and mixing at child birth or other bleeding	
		(50% sensitized by transfusion)	
		Antibodies take time to develop so first baby OK,	
		second Rh +ve preg carries risk of HDNB (17% of 2 nd Rh+ve preg if not treated).	
		Rh antibodies IgG cross placenta. ABO IgM and don't.	